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Reduction by an S action is a method of finding periodic solutions in Hamiltonian systems,
which is known rather as the method of averaging. Such periodic solutions can be reconstructed as
S ! orbits by pulling back the critical points of an associated “reduced Hamiltonian” on a “reduced
phase space” along the reduction. For Hamiltonian systems of two degrees of freedom, a
geometric setting of the reduction is already accomplished in the case where the reduced phase
space is a two-sphere in the Euclidean space R?, and the reduced Hamilton’s equations of motion
are Euler’s equations. This article deals with the case where the reduced phase space will be a two-
hyperboloid in the three-Minkowski space, and the reduced Hamilton’s equations of motion will
be Euler’s equations with respect to the Lorentz metric. This reduction is associated with SU(1,1)
symplectic action on the phase space R*. As a consequence of this association the reduced
Hamiltonian system proves to admit a dynamical group SO(1,2). A well-known reduction by an
S ! action occurs in the case of rotational-invariant Hamiltonian systems, which will be associated
with SL{2,R) symplectic action on R*. It is shown that the reduction associated with SU(1,1) and

with SL(2,R) are symplectically equivalent.

1. INTRODUCTION

Reduction by an S ! action is a method of finding period-
ic solutions in Hamiltonian dynamical systems. Kummer'
made an intensive use of the reduction method to find peri-
odic solutions for the resonant Hamiltonians with two equal
frequencies, i.e.,

H, =} +2%) 403 +13) + 0, (1.1)
where x;, p;, j = 1,2, are the Cartesian coordinates in the
phase space R*. The reduction method is known rather as the
method of averaging. For a fair insight into this method, see
Ref. 2. The level surface of the leading terms in the right-
hand side of (1.1), denoted by L , , are three-spheres or
three-hyperboloids, according to whether the plus sign or
minus sign is considered. The former will be referred to as
the compact case, and the latter as the noncompact case. In
the compact case, the reduction is closely related to the Hopf
map S >—S 2. Cushman and Rod? factored the Hopf map in
terms of the momentum map associated with an SU(2) sym-
plectic action on R* to show that for polynomial Hamilto-
nians H, commutative with L _ the reduced Hamilton’s
equations of motion are just Euler’s equations restricted to
S%in R3.

The purpose of this article is to accomplish a geometric
setting for the reduction by an S'' action in the noncompact
case, which is linked with the “pseudo-Hopf” map of a three-
hyperboloid to a two-hyperboloid. The pseudo-Hopf map
will be factored in terms of the momentum map associated
with an SU(1,1) symplectic action on R*. For Hamiltonians
H_ commutative with L_ the reduced Hamilton’s equa-
tions of motion are proved to be Euler’s equations restricted
to one sheet of a two-sheeted two-hyperboloid in the three-
Minkowski space.

In both compact and noncompact cases, critical points
for Euler’s equations are pulled back to periodic solutions in
the original Hamiltonian systems.

There is a widely known reduction of two degrees of
freedom Hamiltonian systems by an S'! action. The SO(2)
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action on R?, rotation, is symplectically lifted to that on R*,
the phase space. The reduction by the SO(2) is just the ele-
mentary fact that rotational-invariant Hamiltonian systems
of two degrees of freedom can be described in terms of 7 and
p, only, where original Hamiltonian systems are described
in the polar coordinates and their conjugate momenta
(.6, P, Pe). The reduction will be shown to be associated
with a symplectic action of SL(2,R) on R*.

The fact that SU(1,1) is isomorphic with SL(2,R) gives a
symplectic equivalence between the reduction associated
with SU(1,1) and that with SL(2,R). To show this is another
purpose of this article.

The third purpose is to show that the reduced Hamil-
tonian system admits SO(1,2) as a dynamical group.

1. REDUCTION BY U(1)
A. The pseudo-Hopf map

Let (R*,) be a symplectic vector space with the Carte-
sian coordinates (x;, y;), j = 1,2, where » is the standard
symplectic form given by

@ =dx,\Ndy, + dx, \dy,. 2.1)
Define H, by
H, = }{x] +y1) — }x3 +13). (2.2)

The flows of Hamilton’s equation for the H, are generated by
the Hamiltonian vector field X, determined by
i(X,)0 = dH,, i () denoting the interior product. These flows
define a symplectic S ! action on R*. To see this, it is conven-
ient to introduce the complex vector space structure C?in R*
by

Zy =X+, =X~ iy, (2.3)
We remark that z, is not set as x, + iy,. Then » and H, take
the form

i 1 -
@ = TZG”( dz; Ndz,, H,= TZijzjzk,
with

G =(Gy)= ((1) _ (1)) (2.4)
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respectively, where Z, are the complex conjugates of z, .
Further, the Hamiltonian vector field X, is expressed in the
form

X,= -iZ(zj-c_;:—j —Zja%).
Integration of (2.5) yields a U(1) action on C2

D,z "z (2.6)
Here we have used the vector notation for points z of C2,
with (x,y) e RZXR2 2.7)

The action of @,, which is easily known to be symplectic
from (2.4) and (2.6), can be expressed by a 4 X 4 matrix acting

on R*,
(x) ( L,cost  Gsin t) (x)
- ’
J —Gsint I,cost/ \y
where I, denotes the 2 X2 unit matrix and G is the matrix
defined in (2.4).

The level surface H, = }(|z,|* — |2,|*) = his a three-hy-
perboloid which we denote by H 3, where we have assumed
that 4 is a nonzero constant. It is clear that the matrix (2.8)
actson H 3,

Linear combinations of z;Z, are clearly invariant under
@,. Among them, we call the quadratic polynomials defined
below the “pseudo-Hopf” variables

Vi=3—x1x;+y1y)) = — i Relz,7)),

V= 4x, y2 + yix2) = 4 Im(z,2,),

Vi=14(xt +3} + x5 +53) = Yz + |z

Vo=i(xf +yi —x; _yg.)::i(lzllz— [23]%), (2.9)
where Re and Im indicate the real and the imaginary parts,

respectively. We note here that ¥}, j = 1,2,3, span a Lie alge-
bra su(1,1) under the Poisson bracket

{Vsz} = —V; [Vz’Vs} =V,

(2.5)

z=x + iGy,

(2.8)

{ ViV, } =V,
(2.10)

The V, is commutative with all the ¥;. Furthermore, the
square of ¥, equals the Casimir invariant for su{1,1), that is,
one has

-Vi-Vi+vi=Vi. (2.11)

Since ¥, = }H,, the level surface H *is given by ¥, = 1k
in R*. Equation (2.11) then defines a two-sheeted two-hyper-
boloid — ¥? — V% + V2 = (h /2)? in R® when (x, y) are re-
stricted to H>. By H%, and H> we mean the upper sheet
and the lower sheet of the two-hyperboloid, respectively. We
thus define “pseudo-Hopf” maps H>—»H? and H*—>H?
by

0, {22V V2 V3), (2.12a)

LR M A (2.12b)
respectively. Then H * can be shown to be a fiber space over
H?_ with fiber $''. In fact, since ¥}, j = 1,2,3, are invariant
under the U(1) action (2.6), each fiber o '(v) forve H?, is
an integral manifold of X, which is diffeomorphic to S '.

The fiber space structure for # > 0 is easy to see when we
introduce the following coordinates in C2:

z, = ReW+4V2 cosh(r/2), z, = Re!™~#V sinh(r/2),
(2.13)
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where
0<(¥ +¢)/2<2m, —7<(W—¢)/2<m, R>0, 7>0.

H?is given by R = (2h)"/2. It is also known from (2.6) and
(2.13) that these coordinates are subject to the transforma-
tion }— — ¢ and the others fixed. This means that ¢ is the
fiber coordinate.

B. Reduction of the Hamiltonian system (R*,0,+)

Following Cushman and Rod,? we consider polynomial
Hamiltonian functions of the form H = 2H ,;, where H ,,
are homogeneous polynomials of degree 2k, 1<k<n, in the
variables (x;, y;),j = 1,2. The H is assumed, in addition, to be
in normal form with respect to H,; that is, H and H, com-
mute under the Poisson bracket {H,H,} =0. As will be
shown in Sec. II F, the commutativity means that H is a
polynomial in the pseudo-Hopf variables ¥}, j = 0,...,3. The
commutativity implies, moreover, that the flows of the Ha-
miltonian vector field X, take place on H? for any fixed
h #0.

As was already shown in (2.6)—{2.8), the flow of X, de-
fines the symplectic U(1) action @, on R*. The momentum
map associated with @, is H, itself, which is manifestly Ad*
equivariant because H,°®, = H,. This will be touched on
again in Sec. II C.

According to Ref. 4, reduction of (R*,w,H ) by the U(1)
action is carried out as follows. Since @, acts freely and prop-
erly on the momentum manifold M = H ;- '(h), which is
nothing but the level surface H *, the reduction process yields
a smooth orbit manifold Mz = M /S ' [U(1)=S"], which is
diffeomorphic to H> =H? because H? is a fiber space
over H? with fiber §'. The natural projection m:-M—My
together with @ determines a unique symplectic form w, on
M, by m*wg = i*w, where the superscript asterisk indicates
the pullback and i:M—R* is the inclusion map. Since the
Hamiltonian H is invariant under the action of @,, the re-
duced Hamiltonian Hj is induced on My in the manner
such that Hy or = Hoj, Thus we obtain the reduced system
(Mg g ,Hg ). The reduced Hamiltonian vector field Xy, is
given by 7, Xy (p) = Xy (7 p)) for p € M, where the sub-
script asterisk indicates the tangent map.

In what follows, we will perform the reduction in the
coordinates introduced in (2.13).For 4 > 0, the momentum
manifold M is given by R = (24)'/2, and the pseudo-Hopf
variables restricted on M are written as
Vioi= —(h/2)cos ¢ sinh 7, V,0 = (h/2)sin ¢ sinh ,

(2.14)
V0i = (h/2)coshr, Vyoi=h/2,
where i remains to be the inclusion map. These are indepen-
dent of the fiber coordinate . The two-hyperboloid H ? de-
fined by (2.11) with ¥ restricted to M = H * then has coordi-
nates ¢ and 7 with 0<¢ <27 and 7>0.

Since the U(1)-invariant Hamiltonian H should be a
function of ¢ and 7 only, it is regarded as a function H on
H 2. Thisis the meaning of Hy o = Hoi. Now the symplectic
form o can be expressed, after calculation, in the form

@ = R dR A (dy + cosh 7 d7) + R ? sinh 7 d7 Ad¢.
(2.15)
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Restricted to M, o gets the form
i*w = (h /2)sinh 7 dT A\d¢. (2.16)
The right-hand side of (2.16) is thought of as a two-form wp
on H 2. This is the meaning of 7*wy = i*w.
For h <0, it is convenient to set
z, = Re' = #V2sinh(7/2), z, = Re''W+*#"2lcosh(r/2),
(2.17)

in place of (2.13). Then the momentum manifold M is given
by R = (2|# |)/?, and V¥, by similar equations to (2.14).

. C. The momentum map associated with U(1,1)

Consider U(1,1) acting on C°. Elements g in U(1,1) sa-
tisfy the matrix relation g*Gg = G, where g* is the Hermi-
tian conjugate of g. From the expression (2.4), we see that w is
invariant under the action of U(1,1); that is, U(1,1) acts sym-
plectically on C2. By u(1,1) we mean the Lie algebra of U(1,1)
consisting of a satisfying a*G + Ga = 0. The a’s can be
written as

1 (—ic3—ico ¢, +ic,
2\ e—ic i

The U(1,1) and u(1,1) have realizations in 4 X 4 real ma-
trix form. Let 4 + iB and a + ib be elements of U(1,1) and of
u(1,1), respectively. Then pairs (4,B ) and (a,b ) should be sub-
ject to

A'GA+B'GB=G, A'GB=B"GA4, (2.19)

Ga+a’G=0, Gb=b"G, (2.20)
respectively, where the superscript 7 indicates the trans-
pose. Now the actions of U(1,1) and u(1,1) on C%, (4 + iB)(x

+ iGy) and (@ + ib )(x + iGy), yield the desired matrices

) , with¢; eR. (2.18)

ic; — lcg

A —B
(GB GAG (2:21a)
and
a —b
(Gb GaG /)’ (2.215)
respectively.

Let the element (2.18) be expressed as a + ib. Then the
matrix (2.21b) takes the form

0 ¢, ¢+ ¢ ¢,
1 Cy 0 ¢, €3 —Cg
21 - 3 —Cq ¢, 0 —
¢, — 3+ ¢ —c, 0

(2.22)

We take a basis {e¢;},j = 0,...,3, for u(1,1) in the manner such
that the matrix (2.22) is a linear combination Zc;e;. The com-
mutation relations among e; are given by

[ener] = —e; [enes]l =ey, [e3e] =@y
(2.23)
[ene;] =0, j=123
Let & be any element of u(1,1) with the matrix expres-
sion (2.21b). Then the infinitesimal symplectic action on

P = R* associated with £, denoted by &, is the vector field
Cp = (ax — bGy)} 2= + (Gbx + GaGyr 2, (224
Ix dy
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where d/9x = (3/9x,,0/3x,)" and 8 /dy = (3/8y,,0/dy,)",
and the dot here stands for the standard inner product. The
§p has a generating function Fsuch that i({ ,)o = dF; that is,

OF o (Gbx+GaGy), L —ax—bGy. (225
dx dy
F is then found out to be
F(p)=axy — 1bGyy — 1Gbx-x
=jw(lp,p), p=()eR" (2.26)

For a general case, see Ref. 4, p. 190. Expanding Eq. (2.26),
for § = Zc;e;, with respect to ¢;, we obtain
Jo(ép, p) = 1V + .V + 3V + ¢V, (2.27)

where V; are the pseudo-Hopf variables defined by (2.9).
The momentum map L:R*—u(1,1)* is then given (see
Ref. 4, p. 288) by

L (p)§ = jo(ép, p), (2.28)

where the dot means the paring of covectors and vectors.
The L itself has the form

L(p)= Vet + Voet + Vet + Voes,

where {e?] is the basis of u(1,1)* dual to {e¢; ].
The momentum map L is Ad* equivariant. In fact, for
geU(l,1) and § e u(1,1) we have, from (2.28),

L (gp)¢ = lw(gp, gp) = lo( g~ '4gp, P)
=L(p}Ad,- &,

(2.29)

or
L(gp)= Ad¥.oL(p), forpeR* (2.30)

In what follows we specialize U(1,1) to subgroups. The

matrix (2.8) gives a one-parameter subgroup U(1) of U(1,1).
In fact, the matrix (2.21a) with 4 =I,cost and B
= — L sint is just (2.8). Further, the Lie algebra u(l) of
U(1) has a basis e, because exp 2te, equals (2.8). The momen-
tum map associated with U(1) is then a restriction of L. In
effect, setting & = e, in (2.28), we get L ( p)-e; = V, = LH,, 50
that L ( p)|,u» = }H,e§. Accordingly, the Ad* equivariance
of H, under the U(1) action is a special case of that of L.

Here, SU(1,1} is a subgroup of U(1,1) with
det(4 + iB) = 1. The Lie algebra su(1,1) has a basis {e¢;},
j=1,2,3,givenin(2.23). We denotebyJ the momentum map
associated with SU(1,1); J:R*—su(1,1)*, which is a restric-
tion of L to su(1,1)*. Let £ e su(1,1). Then Eqgs. (2.28) and
(2.29) reduce to

J ()€ = Jolép, p),
Jp) =Vt + Vel + Ve,

(2.31)
(2.32)

respectively, where {e}'}, j = 1,2,3, is the basis dual to {e; }.
The Ad* equivariance of J is now transparent:
J(gp) = Ady-.oJ (p). {2.33)
We note that SU(1,1) and U(1) commute and that the
Lie algebra su(1,1) 4 u(1) of SU(L,1)X U(1) coincides with
u(1,1), so that the momentum map L can be thought of as
associated with SU(1,1)>XU(1). We will hereafter give our

concern to SU(1,1) X U(1) rather than U(1,1). We remark in
conclusion that SU(1,1) X U(1) is a covering group of U(1,1).

Toshihiro iwai 887



D. Factoring the canonical projection mM—M/S?

In this section, we are going to break up the natural
projection m:M—M /S ' through the following diagram:

M=H>—J_s1,1)*

oy I

My ~H?* < su(1,1)

where the maps other than J and 7 will be defined in the
sequel. The reasoning to be done in this section is a transla-
tion of that in Ref. 3 into a noncompact case.

Let M continue to denote the three-hyperboloid H > de-
termined by H ;~ '(k ). The action of SU(1,1) is transitive on
M, because for any point (z,,z,) with |z,]* — |z,]> =24 >0
and a fixed point p, = ({24 )'/2,0) of M C C?, we have

(A7 @) (5 g

(2.34)

and for (z,,z) with |z,)>—|z,)?=2h<0 and
Po=10,2}h I)l/z); .
z2( )~ z,2lR ) 0 N £
Z2|h )72 220k l)"”z) ((2|h l)”z) B (22)
(2.36)

Therefore, the Ad* equivariance (2.33) together with
M = SU(1,1)-p, yields

J(M) = [Ad}-.oJ (p)lg € SU(L, 1)} Csu(L,1)*,  (2.37)

where J (po) = (|4 |/2)e¥. Thus J (M) is a coadjoint orbit, so
that it is even dimensional and has a standard symplectic
form (the Kirillov—Kostant-Souriau theorem).

We now determine a symplectic form £ on J (M) such
that

T = i*o, (2.38)

where i:M—R* is the inclusion map. Let R*=P and
su(1,1)* = Q. For £ e su(1,1), we mean by £,(p) and £, ()
the infinitesimal generator of exp #£ action at p € P and of
AdZ, _ . action at u € Q, respectively. Then differentiated,
the Ad* equivariance (2.33) of J with g =-exp¢f gives
Jo&p(P) =60 () with u = J (p), where J, is the tangent
map of J, Moreover, we note that £,(p) has a generating
function J(§) defined by J(£ ) p) = J (p)€; that is, £(p)
= X5(> a Hamiltonian vector field (see Ref. 4, p, 276). The
Ad*equivariancealsoimpliesthat {J & ),J (17)} 7 ([&,7])for
& €su(l,1) (see Ref. 4, p. 281). We are now in a position to
write down {2 by the use of the above facts. Since the coad-
joint action of SU(1,1) is clearly transitiveon J (M ), all £ 5 ( 12}
cover the tangent space to J (M) at u. We then obtain for
é&mesu(l,l)and p =J(p)
2ol 1) =2, §pd, 1M (P))

=(/*2)&rm5)P)

= ol€p,mp)(P) = w(XJ(E)’XJ(n))(p)
= (TEVTm}(2) =T ([E1) p)
=J(p)rl&m] =p-[£m]. (2.39)

This shows that £2 is the Kirillov—K ostant—-Souriau form (see
Ref. 4, p. 281 and Ref. 5, p. 230). The deduction (2.39) is quite

the same as that in Ref. 3, but we reproduced it for the sake of

consistency.
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According to the diagram (2.34), we now pass from
su(l,1)*tosu(1,1). Let§ = 3/ Z{cie; and £’ = 3{=3cje; bein
su(1,1). We define an indeﬁmte inner product ¥ on su(1,1) by

L) = —tr(ff’) = —ciel — e +e505.  (2.40)
Thus su(l,1) is identified with the Minkowski space of di-

mension 3.The vector space isomorphism #* of su(1,1) with
su(1,1)* is induced by

Y'EVE =VEL) (2.41)
For the basis {e; } and {e*} we have
V)= —et, Yle)= —ef, Vle)=er (242)

A simple calculation shows that, on setting y¥# = (3*)~7,
Y'oAd, = Ad¥.op%, or Ad,oy¥ =y¥oAd:..
(2.43)

We know from (2.43) that (y* oJ )(M ) is an orbit of SU(1,1) in
the adjoint representation.

Let T'=su(l,1) and Q = su(1,1)*. Differentiated, Eq.
(2.43) with g = exp #£ yields

Y (€r) = £o°7" (2.44)
where £ and £, are the infinitesimal generators of the ad-
joint action and of the coadjoint action of exp #£ € SU(1,1).
Here we have used the fact that (y*), = y,, as ¥ is linear. We
note that §,(v) = [£,v] for v € su(1,1). Now the symplectic
form £2 defined by £2 = (*)*(2 on (¥ oJ )(M ) is expressed,
for £,m,v € su(1,1), in the form

2 Ermr)v) = viv[E7]) (2.45)
which can be easily proved on account of (2.39) and (2.44).

The last stage in tracing the diagram (2.34) is to identify
su(1,1) with the Minkowski space of dimension 3. Let (R*,I")
be the Minkowski space endowed with the Lorentz metric I”
such that (I"( f;, fi )) = diag( — 1, — 1, + 1) for the standard
basis { £;},/ = 1,2,3, of R>. The Hodge star operator * with
respect to the Lorentz metric I is given by

H(ANAI =f MAOEANG) = —fin HAEAR)= —f
(2.46)
Define a linear map A:R>—su(1,1) by
Alf)=—¢, j=123 (2.47)
Then A is an isometry of (R3I") with (su(1,1),); that is,
A*y=T.

The commutation relations (2.22) and the star operators
(2.46) now give, for jk = 1,2,3,

[A WA S)] =A (A L) (2.48)
which implies that A is a Lie algebra isomorphism of
(R*!,20 A) with su(1,1), where R*! denotes the Minkowski
space (R>,I").

Letting J = A ~'oy* o/, we obtain from (2.32), (2.42),
and (2.47)

7(1’) = Vifs=(V,Vy — Vi) R,

(2.49)

which shows that J restricted to M is just the pseudo-Hopf
map defined by (2.21b). WehaveJ (M) = H”_, indeed. Since
My =M/S'~H? , we can choose J |, for mM—Mp.

h+nf—
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If we choose another basis {e;] with e] = —e,, ¢;

=e,,and ¢; = — e;, which satisfies the same commutation
relations as {e; } does, we have, in place of (2.32),
J(p)= —Viet + Vet + Ve = Vie* + Voer* — Vies®,
{2.50)

where {e/*} is the dual basis to {e;}. Equation (2.49) then
becomes
J(p)=—-Vii+ Voo +Vafs=Vifi+Vofs — Vifs
(2.51)

where { f;} is a basis of R? defined by f{ = ~ fi, 3 =/
and f{ = — f; such that A (f])= —e¢j, j=1,2,3. In this
case, we have J (M) = H?_with respect to the basis { £;}.
However,J (M )may be consideredas H 2 with respect tothe
basis { £} on account of (2.51). Hence we do not need to
distinguish H2, and H2_, and denote one of them by H *for
short. Thus we have realized M in R? as one sheet of a two-
sheeted two-hyperboloid and have factored the projection
mM—M, into

7=A4"loy*oJ|,,. (2.52)
We here point out that because of (2.11) the one-sheeted two-
hyperboloid is not admitted as a realization of My .

Accompanying the realization of My, the symplectic
form wy is also realized on H 2. Consider the form A * in-
duced on H 2. Then from the factorization (2.52), we have

THA D) =T A AR

=J*0 = i*o, (2.53)
—d

o= — [ ] g g
v, Vs v Uy v,

It is now clear that grad ¢ and *(w Av) are orthogonal as

vectors in the Euclidean space. Thus *(w A v) is tangent to

H?. Further, we give a formula useful in the next section; for

A,B,C € R?, one has
T'(*AAB)C)=I(44BAC)),

which can be proved by a simple calculation.

(2.57)

E. Euler’s equations

So far we have obtained (H 2,4 *{2) as a model for the
reduced phase space (My g ). Given a Hamiltonian func-
tion H which is invariant under the U(1) action (2.6), one can
determine a unique function Hzon My such that
Hy o = Hoi to obtain the Hamiltonian vector field X on
My through (X, Jwg = dHg.Our purposein thissection is
to get an explicit form of X, .

As was anticipated in Sec. II B and will be proved in
Sec. I1 F, polynomial Hamiltonian functions H ,; invariant
under U(1) are polynomials in the pseudo-Hopf variables

Hy (x15%2, Y1 Y2} = Fi (V. Vo, Vi, Vo), (2.58)
where F, are polynomials of degree k in the prescribed varia-
bles. Letting (v;) be the Cartesian coordinates in R, we de-
fine on R®

k=n

Flo)= 3 Filvpvy, — 03k /2) (2.59)
k=1
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w,

sothatw, = A *£2. Thuswecantake(H 2,4 *12 Jasamodelfor
the reduced phase space (Mg, w0z ).

We now write out @y in an explicit form. Let A (£ ) = £,
A (7) = 5, and A (¥) = v for £,7,vin su(1,1). A simple compu-
tation which will be written in the next paragraph shows that
tangent vectors to H % at ¥ have the form *( A 7), which cor-
responds to the ordinary vector product in R*>. We note also
that A (+(& A7) = [£,77], which is a consequence of (2.48).
Then from the facts stated above, we have

wr (MEAD) {7 AT)P)
= (1 *8sE A 7),FG A D))
= 2([£v],[nv])v)
=y 1£m))
=y[A @A (E A7)
= A *P)7+EAF)
= I (7,*EAT). (2.54)

Itis convenient for us to get accustomed to vector calcu-
lus in the Minkowski space (R>,I"). We show that an arbi-
trary tangent vector to H 2 at v € H  is expressed in the form
*(w Av) with w € R®. Let

qv) = — v} —vi + 0. (2.55)

Then H? is defined by g(x) = (h /2)>. For w = 2w, f; and
v = 2, f;, one has, by definition,

£
(2.56)

I
Then the function Hi =F|, , a restriction of F to
My ~H?, clearly satisfies Hy o7 = Hoi with H = 3H ,, .

We now derive the Hamiltonian vector field X, by
using (2.54) together with i(Xy Jog =dHg. Set Xy (v)

= *(AAv)forve H> and 4 € R?, since X 1, (V) is tangent to

H?. Then for an arbitrary tangent vector *(B Av)to H” at v,
we have '

g (X g, (v (B AV)v) = wg (4 Av),*(B Av))v)

=TI (v,4(4 A\ B))

— ' (*(4 A\v),B)
~ I (X1, 0)B). (2.60)
Here we have used the formula (2.57). We next obtain, on
account of Hg = F |, ,

dHy (0)(*B Av)) = I (VF,*B Av))

— '(«(VFAv),B), (2.61)
where VF is the gradient of F with respect of the Lorentz
metric I'. From (2.60) and (2.61) we conclude that Xy (v)
= *(VF Av), so that the equation of motion is expressed in
the form

dv

= =Xa )= +(VFAv), forve H?, (2.62)
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which is Euler’s equation in the Minkowski space R>*. In the
ordinary notation of vector calculus in R?, Eq. (2.62) is put
into

dv

— = —(grad F X grad
o (g grad g),

where grad mdlcates the gradient in the Euclidean sense.
This equation was found by Kummer.!

F. Normal form

We now proceed to prove the relation (2.58). Though
the proof is the same as that in Ref. 3, we reproduce it for
consistency. Recall that L x,V; =0,j=0,...,3, and the rela-
tion (2.11) among the pseudo-Hopf variables. Let
P, (x1,%5 y1, ¥o) and @, (V, V2, V3, V) be the vector spaces of
homogeneous polynomials of degree # and m in the specified
variables, respectively. Since Ly, is a derivation, we have

0. (Vi,V2, V3, Vo) C ker(sz |Pop (X 1% Y1, ¥2))- (2.63)

Wemake an attempt to show that equality holds in (2.63). To
this end, we compute the dimension of the vector spaces on
both sides of (2.63). From the relation (2.11) it follows that

O Vi,V V3 Vo) = @ (V. V2, Vi) + Vol — 1 (V1. V2, V).
(2.64)

The dimension of the right-hand side of (2.64) is (m + 1)
The dimension of ker(Ly, [P, } is easily computed when

the polynomials in P, are written in the complex variables

introduced in (2.3). In fact, since polynomials in P, then get

the form

2 iy dake k2zl 2427y,

with j; + j, + ky + k, = n and ¢; ;4 x, = Tk, j,,» and since
X, is expressed in the form (2.5), the Lie derivatives of the

basis monomials are calculated to be

L 2lefZ % = —iljy +r — by — ol 2f202s,

(2.65)

(2.66)

so that the dimension of ker(Ly, |P,) equals the number of
non-negative integer solutions to

i tia—ki—k, =0,

jl +j2+k1 +k2=n. (2.67)
For n = 2m, the number of non-negative integer solutions to
(2.67)is (m + 1)%, and hence equality holds in (2.63). An anal-
ogous equation to (2.66) and the same equations as (2.67)

appeared in Ref. 6 in reducing the quantum harmonic oscil-
lator.

G. SOq(1,2) as a dynamical group

By a dynamical group we mean a Lie group which acts
on the phase space symplectically, and whose Lie algebra has
a realization in functions on the phase space under the Pois-
son bracket such that the Hamiltonian is a function of the
generators in the realization Lie algebra. Our aim in this
section is to show that SO,(1,2) is a dynamical group for the
Hamiltonian system (Mg g ,Hpy).

We start by looking for what group is acting on My . So
far we have reduced the dynamical system (R*w,H) to
(Mg ,wg ,Hg). We recall here that SU(1,1) acts on R* sym-
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plectically, leaving M CR* invariant, and that SU(1,1) and
U(1) commute. Since Mz = M /S [S'~U(1)], SU(1,1) can
act on My; in fact, the action of SU(1,1) is well defined by
D, (w(x)) = migx) for g € SU(1,1) and x € M. The @, are sym-
plectic, that is, @ }or = wg, because the SU(1,1) leaves w
invariant and because 7*wyz = i*w.

From (2.33), (2.43), and (2.52), we get the &, in the form

P, (m(x)) = A ~'oAd, (y* oJ (x)), (2.68)

which shows that the action of SU(1,1) on M} is identified
with the adjoint representation of SU(1,1) in its Lie algebra
su(1,1). The M, is, of course, identified with an adjoint orbit
of SU(1,1). It follows therefore that SU(1,1)/Z,~SO(1,2)
acts on My, where Z, = {I,, — I,} and SO,(1,2) denotes the
identity component of the Lorentz group O(1,2). It is also
clear from the above that the action of SOy(1,2) on My is
symplectic. The action of SO(1,2) was pointed out in Ref. 1
without mentioning its symplecticity.

We proceed to look into the SO(1,2} action. The &,
given by (2.68) can be expressed in the 3 X3 matrix form,
because My is realized as a surface H”> in R® by
;)| > = (V1, V2, — V3) in the Cartesian coordinates (v; ). For

g = exp te;, j = 1,2,3, we obtain the matrices
1 0 0
Dope, = | O cosh ¢ —sinh¢ |,
0 —sinht cosht?
fcosht O sinh?
Powe, = 0 1 0 |
sinht O cosht?
cost —sint O
Dopre, = |sinz  cost 0] (2.69)
0 0 1

Infinitesimal generators of the flows v—®,,, V) J =123,
are then given by

Li=—v;— g —v i
v, v,
aJ
L,= v
2 =V3— a, + 1803
) aJ
L.= — 2.70
3 Uy — a0, +v 1av2 { )

The generators L;, j=1,2,3, are Hamiltonian vector
fields, because the ¢c,‘p «, are symplectic. We wish to obtain
generating functions (or Hamlltomans} for L;. To this end, it
is of practical use to define functions (¥;)z on My ~H * by
Vi |, = (V;)r for j=12, and by vs,,, = — (V3)x. These
functions are special cases of the Hamiltonian Hp with
H=V,, j=12,3 [see (2.58) and (2.59)]. Then we have
(V;)r o = V;°i, i being the inclusion map M—R*. Accord-
ing to (2. 62), the Hamiltonian vector fields X, ,j=1,2,3,
associated with (¥}) are given at v e H? by *(Vv Av) for
J= 1,2, and by *( — Vv, A v). After short calculation, we ob-
tain

A’(Vn)x(v) = - v3.f2 - UZfE;’

Xy, ) =v3 /i + v, 05

Xy W)= —v2 i + 0. /o (2.71)
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Equations (2.70) and (2.71) imply that L; = X, , so that
(V;)r are Hamiltonians for L;. It deserves mention here that
the mapping ¢;— — L; is a Lie algebra homomorphism.

We are now in a position to prove SO,(1,2) to be a dyna-
mical group. We are left with a task to show that (V}),
J=1,2,3, span the Lie algebra so(1,2), for the Hamiltonian
Hp is known to be a function of (¥;)g (Sec. II F). We recall
here that the functions ¥}, j = 1,2,3, span the Lie algebra
su(l,1)~so(1,2) under the Poisson bracket [see (2.10)].
Further we note that 7, X v, x)= X(V,)R (m(x)). Then by using
*w = m*wg, we obtain

(V. Vi Joilx) = (X, X, Joilx)
= (*o)Xy, Xy, ilx)
= (%R )Xy, Xy, )x)
= 0p(my Xy, my Xy, ()
= wx Ky Xy, ()

= {(V;)r (Vie)r } (), (2.72)

so that (V;)r,J = 1,2,3, satisfy the so(1,2) commutation rela-
tions.

Hi. REDUCTION BY S0O(2)

Rotational-invariant Hamiltonian systems with two de-
grees of freedom are reduced to Hamiltonian systems with
one degree of freedom, which give systems on the positive
real line (» > 0). This is an application of Routh’s procedure
for cyclic coordinates.” We will shed new light on this well-
known procedure.

Let (x,,x,, ¥;, ¥,) be the Cartesian coordinates of the
phase space R* and o the standard symplectic form given by
(2.1). Rotations in R?, the x space, lift to R*; that is, SO(2) acts
on R* through

_ (expIN 0 ) . _ (0 —1)
p(t)—( 0 expiN )’ with N = L o)
(3.1)

The action of SO(2) is clearly symplectic. The angular mo-
mentum is the very momentum map associated with the
SO(2). We denote it by 2W;:

Wo =1 (y,Nx), ' (3.2)
where (, ) is the standard inner product on R2, and x and y
are vectors in R

Let us write SL(2,R) in the 4 X4 matrix form

(aI2 bl,

cl, dI,
The SL(2,R) is commutative with the SO(2) givenin (3.1), and
acts on R* symplectically. We will compute the momentum
map associated with the SL(2,R). We take a basis {e]'},
Jj =123, of the Lie algebra sl{2,R) so that any element
& = 2a; e/’ may be expressed as

) , withad —bc=1. (3.3)

a, 0] a,+a, 0
1 0 @ 0 ata) 4y
21la,—a, 0 —a, 0

0 a, — a, 0 —a,
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Then the commutation relations among the ¢;" are

[e.e7] =e5. (3.5)
In a similar manner to that in Sec. II C, we can find a

generating function of the infinitesimal symplectic transfor-

mation corresponding to (3.4). In fact, for § = Za;e/’ and p
= (}) € R* we have a generating function

%w(é—p, p) = al Wl + 02 Wz + a3 W3, (3.6)

[ei”e;] = —ej, [e;”eg’] =ef,

where
Wl = ;11(()’,}’> - (x’x>])
W2 = %(x,y>,

W3 = i(()’, y) + (x’x>)' (37)

We note here that W, j = 1,2,3, are well known to satisfy the
commutation relations

{vaz} = — W, {Wz,Wa} =W, {WS’WI] =W,

(3.8)
and that W;’s are related by
W Wiy Wi=W3, (3.9)

which are similar to (2.10) and (2.11). We also remark that
W;,j=0,..,3, are all invariant under the SO(2) action. The

momentum map J:R*—sl(2,R)* is then defined by

J (p)§ = jolSp, p)- (3.10)
The Ad* equivariance of J can be proved in the same manner
as in {2.30).

We now consider the momentum manifold M deter-
mined by 2W, = ( y,Nx) =, ] being a nonzero constant.
Since for any x in R? — {0}, the equation 2W, = deter-
mines a linear equation in y = {}!), M is diffeomorphic to
(R? — {0}) X R. We will get a concrete idea of the topology of
M in the next section. Now M admits the action of SO(2)
because W, is invariant under the SO(2) action (3.1). There-
fore, one can get the orbit manifold M /S !, which we denote
by My, the same notation as in Sec. II.

We wish to realize the M to be a surface in R*. For this
purpose, like (2.12b), we consider the map of M to R®

Ki(x, yy—(W,,W,, — W,). (3.11)

Forthe same reason asin Sec. II D [see (2.51)] we do not need
to consider the map corresponding to (2.12a). From Eq. (3.9)
with W, =1/2 it follows that «(M ) is one sheet of a two-
sheeted two-hyperboloid in R?, which we denote by H 2, the
same notation as in Sec. I [, = / /2 will be seen to be equi-
valent to H, = h = /in (4.10)]. Since W}, j = 1,2,3, are invar-
iant under SO(2), the inverse image x ~ '(w) of w € H > must be
an invariant manifold for SO(2) which is diffeomorphicto S *.
Therefore we conclude that M /S ! is realized as a surface H *
inR?, and that the map « is identified with the natural projec-
tion m:M— M . The projection 7 determines a unique sym-
plectic form wz on My by m™w, = i*®, where i:M—R* is
the inclusion map. Thus we have a reduced symplectic mani-
fold (Mg ,wg ) as a surface in R>.

We turn to describing the reduction in the polar coordi-
nates (7,6 ) and their conjugate momentum variables ( p,, p,).
We have, as is well known,
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x,=rcosf, y =p,cosd— [sinb/r]p,,
{3.12)
x,=rsing, y,=p,sin0+ [cos0/r] p,,
and
’Pr = (J’JC)» pB = (}’,Nx)~ (3'13)
The momentum manifold M is then given by p, =/, so that
{r,8, p,) is a local coordinate system for M. The action of
SO(2} is described in terms of (7,0, p, } as 6—6 + ¢ with r and

P, fixed. The orbit manifold M /S '~H * then has the coordi-
nates {7, p, ), and can be described by the equations

wy =Y p} +1%/7 = P),

w, = 4rp,,

~wy={(p; +1%/r +7),
where (w;) are the Cartesian coordinates in R>. Equations

{3.14) result from (3.7} and (3.11}~(3.13}, as is easily verified.
The symplectic forms w and wy are expressed as

o =drNdp, +d6ANdp,, {3.15)

respectively. It is clear that the relation 7*w; = i*w holds
for the above forms.

In the same manner as in Sec. II D, we can factor the
projection mM—M /S '. We first prove that J (M ) is a coad-
joint orbit of SL(2,R) in sl(2,R)*. To this end, we show that
SL(2,R) acts transitively on M. Our discussion is broken up
into two parts, according to whether / is positive or negative.
First we take the case where / is positive. Then for a fixed
point (y7,0,0,J7)7 and an arbitrary point (x,,x,, y,, ,)7 of M
we have

(3.14)

wg =drAdp,,

xy, 0 x, O ) X,
1 0 x;, 0 x, {0 _1*] (3.16)
I »$ 0 y 0 0 B 41
0 »y 0 y/ \J, p)
When / is negative, we have for (]7],0,0, — [/])T
x, 0 —-x 0 N X,
i 0 x, 0 — X, 0 I B
m »y€ O — ¥, 0 0 - W
0 » 0 — V2 -/ 2
(3.17)

Equations (3.16) and (3.17) mean that SL(2,R) is transitive on
M. Therefore we obtain, by using the Ad* equivariance of J,

J(M) = (J(gpo)lg € SL2.R)}
= (Adf- o/ (po)lg € SLZR)}, (3.18)

where p, = (1,0,0/7)7 for I positive or p, = (/|[7],0,0,
— J[7])" for Inegative. ThusJ (M ) turns out to be a coadjoint
orbit in sl(2,R)*.

Since sl(2,R) and su(1,1) are isomorphic Lie algebras
[see (2.23) and (3.5)], the same reasoning as that done in Sec.
II D can go through to put J(M) into an adjoint orbit in
sl(2,R). Further, sl(2,R) can be identified with R?, and hence
we obtain eventually the diagram

M~ 512, R)*

| .
M /S '~H?*<+—5sl(2,R) (3.19)
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which gives a decomposition of the natural projection
TM—Mg.

If a Hamiltonian H is given which is invariant under the
SO(2) action, the reduced Hamiltonian H, is determined by
Hp o7r = Hoi. Then we have a reduced Hamiltonian system
(Mg g ,Hg) realized on a two-hyperboloid in R?. We will
return to this system in the latter part of the next section.

IV. EQUIVALENCE OF THE REDUCTIONS

The reductions performed in Secs. II and III are asso-
ciated with the group SU(1,1) X U(1} and SL{2,R) X SO{2}, re-
spectively. We note here that these groups are isomorphic
under the isomorphism given by

1 0 © 1

s=Lft o 0o -1 (4.1)
Z 0 —1 1 0
0 1 1 0
In fact, for g € SL(2,R) given by (3.3}, we obtain
Sgs !
a+d a—d b—c¢ b+c
_ 1 a—d a+d b+c b—c
"2l -b+c b+c  a+d —a+d)
b+c ~b+c¢ —a+d a+d
4.2)
which belongs to (2.21a), the elements of SU(1,1), together
with
A=_L(a+d a—d) B=~1—(_b+c b+c)
2\a—d a+d/’ 2\—b—¢c b—c/’
{4.3)
and for p(t) € SO(2) given by (3.1),
cost 0 sin¢ 0
- 0 cos t 0 —sint
Sple)S = —sint 0 cost 0 ’
0 sin ¢ 0 cost
(4.4)

which is nothing but the matrix (2.8}, the elements of U{1).
We denote the right-hand side of Eq. (4.4) by @ (¢).

The  isomorphism of  SU(1,1)XU(l) with
SL(2,R) X SO{2) gives rise to the Lie algebra isomorphism of
su(l,1} + u{l) with sl(2,R) + so(2). We have, indeed, for
& €s1(2,R) given by (3.4)

0 a, a, a,
a 0 a a
ses—' =1 2 ! o B 4.5
5 —a, a, 0 —a, 4.3)
a —a;, —a, 0

which is an element of su(1,1) given by (2.22) with ¢; = a;,
j=123, and ¢, =0. As for the isomorphism u(l}~so{2},
differentiated with respect to ¢, Eq. (4.4) yields

s = (0. 9,

which is a basis of u(1) given by (2.22) with¢, = ¢, =¢; =0
and CO = l.

(4.6}
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Furthermore, the isomorphism S is symplectic. It is, in
effect, easy to verify that for p’ = Sp withp’ = (})and p = (})
one has 2dx; Ady; = 2dx; Ady;; that is,

w{Sp,Sq) = &( p,q), for p,g e R 4.7)

We are now in a position to show that the momentum
maps associated with SU(1,1) and with SL(2,R) are equiva-
lent. Let £ € s1(2,R) be given by (3.4). Then by using (4.7), we
obtain for p’ = Sp

Jo(ép, p) = 10(SES ~'p', P')- (4.8)
The left-hand side equals the pairing of £ € sl(2,R) and the
momentum map associated with SL(2,R) [see (3.10)], and the
right-hand side the pairing of SES ~! € su(1,1) and the mo-
mentum map associated with SU(1,1). Thus Eq. (4.8) means
the equivalence of the momentum maps. From (2.27) with
¢, = 0 and (3.6) with a; = c;, Eq. (4.8) implies also that

Wip)=Vi(p), Wip)=ViAP), Wip)="Vsp)
(4.9)

As for W, and V,, the momenta associated with U(1) and
SO(2), respectively, we have

Wil p) = Vol D) = {H ( p'). (4.10)
This equation shows that the level surface H, = hin Sec. ILis
diffeomorphic with the momentum manifold W, =1/2 in
Sec. I11, so that the latter is the three-hyperboloid H >.

Thus we have proved that the reductions from (R*,®) to
(Mg g ), performed in Secs. II and 111, are equivalent; that
is, in each case, the momentum manifold M is diffeomorphic
to a three-hyperboloid, and the orbit manifold M for the S’
action [S '~U(1)~S0O(2)] is realized as one sheet of a two-
sheeted two-hyperboloid in R?, which is identified with an
adjoint orbit of the group SU(1,1)~SL(2,R) in
su(1,1)~sl(2,R). Of course, the reduced symplectic form w,
is unique by the reduction, so that it is the same in each case.

On having made clear the equivalence of the reductions,
we proceed to a detailed discussion on SO(2)-invariant Ha-
miltonian systems which was skipped over in Sec. III. Let K
be an SO(2)-invariant Hamiltonian, which is assumed to be a
finite sum of even number degree homogeneous polynomials
in {x;,x,, ¥;, y;); K = 2K ,;. Then by the linear symplectic
mapping S defined by (4.1), K is transformed into a U{1)-
invariant Hamiltonian H determined by K = Ho°S. In fact,
for the Hamiltonian X such that Kop(r) =K, one has
Hod@ (t) = H on account of Eq. (4.4). The Hamiltonian H is,
of course, a finite sum of even number degree homogeneous
polynomials; H = 2H ,,. According to the result in Sec.
II'F, the H, U(1}-invariant, is a polynomial function of ¥,
Jj=0,...,3. Hence K becomes a polynomial function of W,
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j=0,...,3, owing to Egs. {4.9) and (4.10). Thus we come to the

conclusion that polynomial Hamiltonians K = 2X ,, invar-
iant under SO(2) are polynomials in the variables W,
Jj=0,...,3. The reduced Hamiltonian K, on My, determined
by K o7 = Koi, is therefore a polynomial function in (W} ),
j=123, where the (W) are determined by
(W;)r om = W,°i and equal to the right-hand sides of Eq.
(3.14).

Then, Hamilton’s equations for the reduced system
(Mg g ,Hpy ), which are usually described in terms of (#, p, ),
can be expressed as Euler’s equations in a similar manner to
Eq. (2.62).

We conclude this section with a remark on a dynamical
group. We have shown in Sec. II G that SO,(1,2) is a dynami-
cal group for the reduced Hamiltonian system (M ,wg Hy ).
For the same reason as in Sec. II G, SO(1,2) is also a dyna-
mical group for the reduced Hamiltonian system
(Mg, 0r . Kg) If K =2W,, 2K becomes equal to 2(W;),.
We may call 2(W;)g, (W;)g being given in the right-hand
side of (3.14), the Hamiltonian for the radial harmonic oscil-
lator. If we choose K=W,+ W,;, we obtain
K =}(p? +1%/7), a radial free particle Hamiltonian. If
K =2W,, K; becomes a radial repulsive oscillator Hamil-
tonian. Therefore, SO,(1,2) may be called a dynamical group
for the radial harmonic oscillator, a radial free particle, or
the radial repulsive oscillator.

Addendum: After this manuscript was completed, the
author’s attention was drawn to Ref. 8 (MR 84g #58043)in
which part of this article (Euler’s equation) was discussed in
a different manner. Interest in this article, however, centers
on the dynamical group SOy(1,2) =SL(2,R)/Z,. Further, the
reduction performed in this article will be shown in a future
paper to have a quantum analog; that is, a realization of
SL(2,R) in harmonic oscillator annihilation and creation op-
erators on L }(R?) proves to be reducible by the S ' action to
unitary irreducible representations of SL(2,R) on
L¥R*;rdn).
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G (2) D SU(2) X SU(2) is a two-missing-labels problem, and therefore in order to give a complete
and orthogonal specification of states of irreducible representations of G (2) in an SU(2) X SU(2)
basis, one needs to find a pair of commuting Hermitian operators which are scalar with respect to
the SU(2) X SU(2) subalgebra. A theorem due to Peccia and Sharp states that there are, apart from
the Lie algebra invariants, twice as many functionally independent scalars as missing labels. Here
two commuting SU(2) X SU(2) scalars are obtained, both of sixth order in the G (2) basis elements.
They are in fact combinations of five scalars of different tensorial types, indicating that the
functionally independent ones are in general insufficient to provide the lowest-order commuting
scalars. An expression for the sixth-order invariant of G (2) is also obtained.

I. INTRODUCTION

The problem of classifying states of irreducible repre-
sentations (IR) of a Lie algebra G with respect to a subalgebra
H is one which has been considered by many authors in re-
cent years. In any physical application of a symmetry alge-
bra G it is desirable to obtain a set of basis states which are
orthogonal and which are uniquely labeled by suitably cho-
sen parameters. This can be achieved by choosing the param-
eters to be the eigenvalues of a complete set of commuting
Hermitian operators, and this is partially achieved by choos-
ing the invariants of G and the subalgebra H together with
the internal state labeling operators of H. If no degeneracies
occur, i.e., if each IR of H occurs with multiplicity 1 in the
reducible representation of H obtained when the IR under
consideration of G is restricted to H, then the above set of
operators will be complete and a unique sepcification of the
basis states will have been achieved. Such is the case, for
instance, for SO(5) DS0O(4) (see Refs. 1 and 2).

In general, however, degeneracies do occur and further
labeling operators need to be found. The most convenient
method of obtaining these is to find operators constructed
from the enveloping algebra of G which are scalar with re-
spect to H, i.e., which commute with all elements of H. Fin-
ally, if G D H is an r-missing-labels problem, one tries to
find a subset of » mutually commuting scalars.

A theorem due to Peccia and Sharp® states that the
number of functionally independent scalars for the case
where G and H are semisimple Lie algebras is exactly double
the number of missing labels. Thus for the simplest state
labeling problem considered, namely the one-missing-label
problem SU(3) D SO(3), there are two functionally indepen-
dent scalars, either of which can be chosen to provide the
missing label. The problem of determining their eigenvalues
was first solved by Hughes** and by Judd et a/. Hughes used
shift operator techniques developed by Hughes and Yade-
gar.” These techniques have been considerably refined lately
and reapplied to SU(3) D SO(3) by De Meyer ez al.>-'°

The simplest, and most exhaustively considered, two-
missing-labels problem is that of SU(4} D SU(2)xSU(2).

* Research Assistant N.F.W.0., Belgium.
Y Permanent address: Seminarie voor Wiskundige Natuurkunde R.U.G.,
Krijgslaan 281-S9, B-9000 Gent, Belgium.
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Here one needs to find a pair of independent commuting
SU(2)x SU(2) scalars, and this was first accomplished by
Moshinsky and Nagel.!! Tables listing their numerical
eigenvalues were set up by Quesne!? for low-dimensional IR
of SU(4), and Van der Jeugt et al.’ used shift operator tech-
niques to obtain general expressions for the eigenvalues of
these operators. An independent set of commuting operators
has also been constructed by Quesne'* and Partensky and
Maguin.'* The commuting scalars for this problem were of
third or fourth degree in the basis elements of SU(4).

More recently the problem of obtaining missing-label
operators for O( p) D O(p — 2)XO(2) has been considered
by Bincer,'® and Van der Jeugt'” has discussed a procedure
for obtaining a pair of commuting scalars for G O [SU(2)]",
although his method is not immediately applicable to the
case where the scalars are of greater than second degree in
the elements of G — [SU(2)]".

The method employed by some of these authors for ob-
taining the scalars is to obtain an integrity basis for G D H,
i.e., a finite number of elementary H tensors, in terms of
which all others may be expressed as stretched products.®!®
For SU(4) O SU(2)xSU(2), let the SU(2) X SU(2) basis ele-
ments be denoted by S;,7;,i = 0, + 1, and the remaining ba-
sis elements, which form a nine-dimensional irreducible
SU(2)x SU(2) tensor representation, by Q;;, i,j=0, + 1.
An SU(2)x SU(2) scalar of degree s,t,q, respectively, in the
S;,T;, and @, ; is denoted by C (29} ' An integrity basis con-
sists, apart from the three SU(4) and two SU(2) X SU(2) invar-
iants, of a further seven scalars of type C 'Y, C?%, C 022,
CM12 and €13, €20 €024 Gince the problem is a two-
missing-labels one, according to the theorem of Peccia and
Sharp’® there exist from this set only four functionally inde-
pendent scalars, and Quesne'? showed that they could be
chosen to be the ones of type C''?, C?°?, C©*? and C "2,
Finally, from these four one can find two independent pairs
of commuting operators namely { C ?°?, C©*?}, and the pair
{com cemy ¢ _ ¢} originally found by Mo-
shinsky and Nagel. Note that none of these is of greater than
fourth overall degree, nor of greater than second degree in
the tensor components @, ;.

In this paper we consider the two-missing-labels prob-
lem G (2) D SU{2)x SU(2). We denote the SU(2) X SU{(2) ba-
sis elements by j;, k; and the remaining eight elements,
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which form an irreducible SU(2)XSU(2) tensor, by R,,,,
4= %3 +handv = 1. ForG(2),apartfrom the second-
and sixth-order invariants and the two SU(2) X SU(2) invar-
iants, the scalars of degree not greater than 6 are'® C %2,
cha ¢ ceon o4 and €114, Peccia and Sharp’s
theorem tells us for this case that four of these are functional-
ly independent; these may be chosen as C ?°?, C 112, C 312,
and C %, However, as we shall see, in order to construct a
commuting pair of operators, we shall need in addition to
these four the scalar C %%, We do not need C"!¥, but we
cannot rule out the possibility of an independent pair of com-
muting scalars of sixth degree which includes it. Nor can we
exclude the possibility that a pair of commuting scalars of
higher than sixth degree can be constructed from the four
functionally independent ones, but this paper does show that
if one wants the lowest-degree commuting scalars then the
functionally independent scalars are not always sufficient.

In Sec. II we give the commutation relations for G (2)
and the method of constructing irreducible representations
of SU(2) X SU(2) of higher than the first degree in the R,,,, and
the construction from them of the corresponding scalar op-
erators. In Sec. III we construct explicitly the scalars of the
above types together with C 9, and in Sec. IV we give the
formulas in terms of them for the Hermitian commuting
scalars ¥, and Y,, together with a brief description of the
computer method employed in finding them. For complete-
ness we also give the form of the sixth-order invariant, which
does not appear to have been given in the literature previous-
ly. We give Y,, ¥, and I explicitly in terms of the basis
elements of G (2) in Tables I, II, and IIL

No attempt is made in this paper to obtain eigenvalues
of ¥, and Y,, as was done in the case of SU(4)
D SU(2) X SU(2) by Van der Jeugt et al.,'* but it is intended
to use shift operator techmques to tackle this problem in a
later paper.

Il. THE LIE ALGEBRA G(2)

A basis for the Lie algebra G (2) may be chosen to consist
of the generators (o, j , ), (ko, k . ) Of the subalgebra SU;(2)
X8U,(2) together with an eight-dimensional irreducible
tensor representation of SU;(2) X SU, (2), which we denote
byR,,,n = 3 %14, v= 1 Thesesatisfy the commuta-
tion relations

[jO’jj: ] = :tji:

[koky = +k,., [ki, k_]=2k,

[jo R, ] =uR,,, [j. R

[j:t » R + l/Z,v] = \/§R +3/2,v?

[j:t ’ R:FS/Z,V] = \/SRZFI/LV’

[k R, ] =VR,., [ki Ruz12) =R, 102/
together with the mutual commutation relations of the R,,,,

[Rs/z, 172 R _ 172, — 172 ] = - (1/2\/§)j+,

[Rs/z, —-12 R _ 172,172 ] = (1/2\/§)j+,

[Rn/z, 172 ’Rl/z, —-172 ] =1j.

[R—s/z, - l/2!R1/2, 1/2] = - (1/2\/5)1'—:

[j+9j—] = 2j0’
(2.1)

F1/2,v ] =2R + 1/2,v»

(2.2)

895 J. Math. Phys., Vol. 26, No. 5, May 1985

[R —3/2, 1/2,R1/z, —172 ] = (1/2\/§)j—r

[R — 172, 2R _ 172, — 1/2] = - %j_,
[Rs/z, 2R 3/2,1/2 ] = - ik+’

[Rl/z, 12:R _1210 ] = £k+’

[Rs/z, —12R _3p _an ] = ﬁk—:

[R1/2, —12R i 1/2] = - ﬁk—’
[Rs2,125R _3p2, —12] = Yo + ko),
[Rs2, —12R _3212 ] =Y —Jo + ko),
[Rl/z. 2R _ 2, —1/2 ] = = é(jo + 3ko)s
[RI/Z, —waR /2,172 ] = %(jo — 3k,).

All commutators not given in the above equations vanish.

The Hermiticity conditions satisfied by the basis ele-
ments in order that representations exponentiate to unitary
representations of the Lie group are

jg =jo: ]Ti =j:|:’ kg =kor k*i (2-4)
RLV =(—1F+*R (2.5)
All tensor operators in this paper will in fact satisfy the Her-
miticity conditions (2.5) with R replaced by the tensor under

consideration and u,v in the corresponding ranges.
The invariants of SU;(2) X SU, (2) are

(2.3)

=k:F

— e~

= i-+j3—jo K>=k,k_+k}—k, (2.6)
and the second-order invariant of G (2) is
12 = R3/2. l/ZR —3/2, —172 T R3/2, - 1/2R —3/2,172
- Rl/2, 1/2R —1/2, — 172 + Rl/2, — 1/2R —1/2, 12
+3J2+1K2—3j, (2.7)

The expression for the sixth-order invariant I, contains 730
terms and is given in Table III. Its derivation is discussed in
Sec. IV.

In the following section we shall obtain the tensor oper-
ators from which we construct the scalar operators needed to
find the commuting scalars. The method used to obtain them
is as follows: Suppose T'cP) and T‘ €D are, respectively,
(2C + 1)2D + 1) and (2C + 1)(2D + 1)-dimensional
irreducible tensor representations of SU;(2) X SU, (2). Then
we construct the irreducible (2 + 1)(2k + 1}-dimensional
Kronecker product tensor representation (IT)iX), by
means of the formula®®

(TTVEE = SV + 2k +1)(— 1)°+#
53
c C i\f\b D k
G5 e s )
XT\GPIT'EP), (2.8)

where (S S _ /) is a 3 symbol. Provided TSP and TSP
satisfy Hermiticity conditions of type (2.5), then so will the
(TT)'}%). Given a (2 + 1)2k + 1)-dimensional tensor
(R ')[{,fg’, a= —j,.., j, B= —k,.., k, of degree r in
the R,,, , then, provided j and k are both integral, one may
construct ascalar C1/%"1 of degree [ j,k,rlin thej, k;, R,,, by
adapting to the case of SU,(2) X SU, (2) a formula first given
by Hughes and Yadegar’ for the case of an irreducible tensor
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representation of a single SU(2). In that paper a formula was
given for operators which shift up and down between differ-
ent IR of SU(2), and, provided the tensor representation had
dimension (2j + 1) with j integral, there exists a zero shift
[i.e., an SU(2) scalar] operator which is given as a special case
of the formula. For a single SU;(2) and tensor T’ 71 the scalar
operator is given by the formula

] j ) i sa
0o = Yol jilim ) T§" + z [Ya(j;ll’ml)TtlzI] -
a=1
+ (= Valjshy —m)T2, j5 ], (2.9)
where/,(/, + 1)and m, are eigenvalues of J > and j, for a state
|/m;) of an IR of SU;(2) upon which O, acts and, for
a=0,..j,

}/a (j;lhml)

( 1)J+3’ —m

[(J VR +j+ W —my— e + m,)! ]1/2
M2, =M + my+al(l, —m))!

X(a L l,).
—a—m; m

It was shown in that paper that /, and m, occur only to
positive integral power, and /, in fact occurs only in the com-
bination /,(/, + 1), so m,; and /,(/; 4+ 1) can always be re-
placed by the operators j, and J 2. The above expression is
therefore, contrary to appearance, not dependent on its ac-
tions on a particular state |/,,m,) of an IR of SU;(2). In fact,
O, is of degree j in the j;, and of degree 1 in the tensor compo-
nents 7.7,

It is not difficult to adapt this to the case of SU;(2)
X SU, (2). Given the tensor (R ")'2%], we define

A5 = yolihmy )R V5!
+ Z [Vallom )R V2GS

a=1

+ (= Vyalishy = m)RV2EL 7S 1. (2.10)
Then the required Hermitian scalar of degree [ j,k,r] in thej;,
k;, R,, is given by

C ikl — Vo(k' Iz,mz)A (j,kl

+ 2 [Valklomo)d {5k

(2.10)

+ (= Veyglhsh, — md 5 LEP, ], (2.12)
1
23T, = 3 {8 j2 — V6t j2 (jo— 1) = V3731,
i=0,+1

+V3/5t_ i j (VP =5 —5—2)—

where we have used for brevity the notation k, =k,
ko=2kok_1= —k_.

The above three tensor types were obtained from the
Kronecker product of two R /% /3] tensors. In order to ob-
tain the tensors of fourth order in the R, we make use of the
tensors already obtained. Firstly, to obtain the tensor of type
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\/gt—Ziji- (fo+1)—

where the y coefficients are as given in Eqgs. (2.10) and
L, + 1),m,L,(l, + 1),m, are replaced by J 2, j,,K 2, and k,,.

lll. CONSTRUCTION OF THE SCALARS

We now use the general method given in Sec. II to deter-
mine the scalars out of which the commuting scalars ¥, and
Y, and the invariant 7 will be constructed. We shall adopt
the following shorthand notation:

0, = C 202 Sy=CM2, T =C612,
VO — C(024), WO — C(114), PO _ C(OO6).

We shall obtain the scalars by first constructing the ap-
propriate tensor using Eq. (2.8) and then using Eqgs. (2.10}-

(2.12), except that in order to minimize the number of square
roots and fractions they will generally be multiplied by over-

Uo — C(204)
(3.1)

all scaling constants.
First, using (2.8), we obtain the tensor of type (R 2)i>%
with highest components
gi2= =R+ 12 R & 172, F 172
+R .3 512R 112, 2102 (3.2)

The other components may be obtained from this by
using the commutation rules (2.1)-(2.3).
Then use of (2.10}+2.12) gives

Qo= —39.27% —3q9_,7% +3¢,.17i-(2o—1)

—3g_1j 2o+ 1) +V6g:(J* =3 3). (3.3)
Similarly, the tensor of type (R ?)""!! has highest compo-
nents

S, = 2(\/§’¢ w212 R T2 R 2i 12,172 ) (3.4)
and then S, is given by

V10S, = s,k _j_ —V2s10koj— — 51 _ 1k
+5_1 ki +\/—2-s—1okoj+ —s_puk_Jj+
+ V250 _1k+jo+2500kojo—\/§smk—jo- (3.5)

Next, the tensor of type (R %> has highest compo-
nents

tim = 2\/§R Zi 3/2,1/2» (3-6)
and T, is then given by
(=55 + %o —2) + 2/A5e Jol3T% — 575 — 1)
t_yj% Yk (3.7)

(R %)% we use the Kronecker product of two tensors of type
(R )19, Application of Eq. (2.8) yields the highest compo-
nents

“i2=241240+24<ﬂ¢2—6qzi1’ (3.8)
and then U, can be written down in analogy with Eq. (3.3),

J. W, B. Hughes and J. Van der Jeugt 896



Uy= — 3u+2j2_ - 3u—2j2+ +3u,j_(2o—1)

—3u_1j 2o+ 1) + Vugl J* — 33). (3.9)
For the tensor of type (R %), we use the Kronecker
product of two tensors of type (R 2! to obtain
Uiz = 6(s, 15141 F5 1181 1 -5 +1h (3.10)
and then ¥ is given by
Vo=30,,k% +3v_5k% ~3v, ,k_(2k,—1)

+3v_ k(2 + 1) — VEug(K 2 — 3k2).  (3.11)

These scalars suffice for the construction of ¥, and Y,,

but for I, we shall also need W, and P,. First, to obtain the

tensor of type (R *)'!], we again take the Kronecker product

of two tensors of type (R 9)!!!, which yields the highest com-
ponents

W, = 15,1150t 505+ 11 F51 1051 F 5015 4 10

(3.12)
Then in analogy with (3.5) we obtain
Wo=w,k_j_ — 2w okoj_ —wy_k, j_
+w_y ik fy 2w oko s —w_nk_j.
+2wo_ ik 4 jo + 2weokojo — V2work_Jjo.  (3.13)

Finally, in order to construct the scalar P, we first con-
struct the tensor of type (R *)['/> /2! with highest component

P 1/2,1/2
= 3(R3/2. 1/2R — 372, 1/2R1/2, —1/2

- R3/2, - 1/2R — 372, 1/2R1/2. 1/2)
- \/3(R3/2, l/ZR - 172, 1/2R -1/72, — 172

=Ry _1nR 1R _nn)

+ R 2R 1nR i

=R 2R, —12R Z1p2002)

— 1R /3 12 (4o — 3ko) + Ripo, _ 12k
—R_\panse (3.14)

By taking the Kronecker product of this tensor with itself we
can extract the tensor type (R 4)!°?. This has only one compo-
nent which is identical to P,. This is

Po=D1n212P 112, —12 Y P 12, —12P12, 102

This completes the calculation of the scalars needed to calcu-
late Y|, Y,, and I,. The method of calculating them may
seem somewhat cumbersome, however, as was mentioned
earlier, the scalars are particular zero-shift cases of more
general shift operators which have the same tensorial type as
the scalars and which connect different IR of SU;(2)
X 8U, (2) within an IR of G (2). These are the tools which it is
intended to employ to calculate the eigenvalues of the scalars
in a later paper and their construction also depends on the
prior construction of the various tensor components listed in
this section. Furthermore, computer programs have recent-
ly been developed by De Meyer and Vanden Berghe®® for
calculating the different tensorial types of scalars which are
based on the method employed in this paper and which also
employ subroutines for calculating 3-f symbols.
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based on the method employed in this paper and which also
employ subroutines for calculating 3-j symbols.

IV. THE COMMUTING SCALARS Y, AND Y,

In order to search for a pair of commuting operators
from the set of scalars { @y, So, Ty, Uy, V), we used FORTRAN
programs developed by De Meyer, Vanden Berghe, and Van
der Jeugt at Gent University. In order to avoid decimals, the
following code was used for the basis elements:

1=2j,, 4=2k, 5=k_,
6=k, 7—'—‘:2\[§R—1/2.—1/2y 852\/§R-1/2, 1722

952\/§R 172, = 172> 1052\[3—121/2, 172
HU=2R _;, _1p> 12=2R_;,; 1,
13=2R;,, _ 1, 14=2Ry, 1. (4.1)

With these rescaled basis elements the structure con-
stants for G (2) all become integers.

To facilitate comparison of terms in different scalars
and their commutators, the terms are put in a standard order
in which the basis elements with numerically higher codes
are written to the left of those with numerically lower codes.
For instance, when written in standard ordered numerical
code, the invariant I, given in Eq. (2.7) becomes

241, = 6(14,11) — 6(13,12) — 2(10,7) + 2(9,8)
+ 12(6,5) + 3(4,4) + 4(3,2) + (1,1)
— 6(4) — 10(1). ' (4.2)

The essential part of the FORTRAN program is a subrou-
tine which replaces a nonstandard ordered polynomial form
in the basis elements by the corresponding standard ordered
polynomial together with all the extra lower-degree polyno-
mial forms, themselves standard ordered, incurred by inter-
changing basis elements and making use of the commutation
relations in terms of the structure constants.

These programs were used to calculate all possible com-
mutators of scalars of degree not greater than 6. Since Q,and
S, are fourth degree, commutators of products of these with
I,,J?, and K ? were also needed. We then searched for linear
combinations of these commutators in which all highest-
(i.e., 11th-) degree terms vanished, and then corrections were
made to eliminate the lower-degree terms.

Fortunately we were able to find a vanishing linear
combination of commutators which could be expressed as a
commutator of linear combinations of the scalars. These two
linear combinations, which are therefore the commuting
scalars Y, and Y,, are given in terms of the scalars of Sec. II1
by the formulas

2=j_,

3=j,,

Y, =V, — 5J65,(4K 2 — 3), (4.3)
Y, = 6U, + 12J6T, + 9J6S,4J % — 3)
— 220,61, — 3K* —J? 4+ 9). (4.4)

24\/6Y, and 16/6Y,, which contain, respectively, 254 and
264 standard ordered terms, are given in Tables I and II.
They both contain 110 terms of degree 6, which may justbe a
coincidence; it is possible, however, that there is some hid-
den reason for this. Note that the contributions to ¥, and ¥,
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TABLE I. The terms of 24\/6 ¥, are given in standard order in terms of the numerical code of Eq. (4.2). The coefficients are written on the right of the basis
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(4.5)

+ 194412K2 4 721, J* — 4321, J?K % — 19441,K *

+ 10921, J? + 14311, K * — 1566K * — 1932K 2J 2

+ 8Y3Q,(181, — 3J2 — 45K 2 4 11) + 21612J2
—82J% 4+ 3240K 2 + 876J 2.

— 10J¢ — 198K 27 * 4 810K *J? + 486K ©

I = 864P, + 324 W, — 54/6V, — 366U, — 432T,
— 728,(901, + 27J2 — 135K 2 + 134)

Finally, using similar (but much less time consuming)
programs, we obtained the following expression for the

sixth-order invariant:

degree 2 in the tensor basis elements [see Eq. (2.9) of that

paper]. Also, the fact that the sixth-degree terms of fourth
degree in the R,,, in ¥, and Y, are in both cases precisely 66

G D [SU(2)]* for which there were commuting scalars of
in number may or may not be a coincidence.

T4 and T'12%4, respectively, in loose analogy with results
obtained by Van der Jeugt'’ for cases of Lie algebra

of highest, i.e., fourth, degree in the R, are of tensor type

TABLE IL Terms of 16/6 ;.
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than that of De Meyer.

This form for I is, of course, not unique since any cubic

polynomial in I, could be added to it to yield another sixth-

order invariant. The authors are not aware of any previously
published listing of I, although it was obtained in a different

V. CONCLUSION

We have obtained in this paper a pair of commuting
scalars for G (2) D SU(2) X SU(2) of sixth degree in the basis

form by De Meyer.?! We give 81 in Table II1. At 730 terms,

including 407 of sixth degree, it is shorter by about 100 terms

TABLE III. Terms of 8/
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TABLE III. (Continued.)
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elements. These were the lowest-degree pair that could be
constructed from the scalars C ?°?, V12 C 312 C024 and
C @3, but we cannot exclude a pair which includes C "%,
Thus for the lowest-degree commuting scalars the function-
ally independent scalars, i.e., the first four of the above sca-
lars, are insufficient, although presumably a pair of higher-
degree commuting scalars could be constructed from them.

It is intended to use the shift operator techniques of
Hughes and Yadegar” to obtain the eigenvalues of ¥, and ¥,
for IR of G (2), and these shift operators will be constructed
from the various tensorial types listed in Sec. III.
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Application of generating function techniques to Lie superalgebras
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The construction of generating functions for multiplicities of irreducible representations of Lie
superalgebras from generating functions for characters is examined, and applied in order to
obtain polynomial tensors and branching rules. Problems arising because of the existence of
typical and atypical representations are discussed in detail. The techniques are applied to osp(1,2),

spl(1,2), osp(3,2), and osp(4,2).

1. INTRODUCTION

In the last few years, generating functions have emerged
as a useful tool for the solution of a number of problems in
the representation theory of Lie algebras and their applica-
tions in physics.'® A single generating function (GF) for a
Lie algebra G of rank / has the form

G,,..,4)
= 3 S S DA,

where A4,,..., A; are dummy variables which carry the Dyn-
kin labels (ay,...,a,) of an irreducible representation (irrep) of

(1.1)

.....

lynomial functions with integer coefficients in some other
variables, which contain useful information about the repre-
new variables 4 1,..., 4, which carry as exponents the
Dynkin labels (a,...,a,,) of irreps of a subalgebra H of G, and
of which the coefficient is the multiplicity of the irrep
(a},-..,a,,) in the decomposition of (a;,...,a,;). Such a generat-
ing function gives the branching rule for G—H. In other
exponent is the degree of polynomial tensor products of a
given tensor representation of G—then we are dealing with a
polynomial tensor GF. An important feature of the GF’s is
that they can be written in a closed form as a rational expres-
sion whose numerator is a polynomial in the dummy varia-
bles with positive integer coefficients, and whose denomina-
tor consists of products of terms (1 — X ), where X is a
product of powers of the variables. Such denominator fac-
tors are formal notations for geometric series, and the GF is
of the form (1.1) only when these denominator terms are
expanded in power series.

For Lie algebras there is a one-to-one correspondence
between thelabels (a,,...,q;) of its finite-dimensional irreduci-
ble representations and the set of multiplets of / non-negative
integers. Hence the generating function techniques are a nat-
ural way of dealing with problems in the representation the-
ory of Lie algebras.

For representations of Lie superalgebras, some difficul-
ties arise. A first problem is that the labels (a,;...;@;) of finite-
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dimensional irreps of superalgebras™® are not all integers,
and that there are certain constraints (or “‘consistency condi-
tions”) on a set of numbers (a,;...;a;) if they are to correspond
to an irrep of finite dimension. A second problem is that Lie
superalgebras have typical and atypical representations,”®
which have to be treated separately. Obviously, one cannot
restrict oneself to typical representations since, for instance,
in the decomposition of the tensor product of two typical
representations, also atypical (or, more generally, indecom-
posable) representations can appear.® In this paper we show
how to deal with such difficulties.

In Sec. II we examine the general construction of GF’s
for Lie superalgebras, starting from a character generating
function. Section III contains results for osp(1,2), a Lie su-
peralgebra which has only typical representations. In Sec. IV
generating functions are given for spl(1,2), which is a Lie
superalgebra of type I (See Refs. 8 and 10). Sections V and VI
give results for two superalgebras of type II (see Refs. 8 and
11), namely osp(3,2) and osp(4,2). Section VII contains some
concluding remarks.

Il. CONSTRUCTION OF GENERATING FUNCTIONS FOR
LIE SUPERALGEBRAS

The starting point for generating functions for Lie alge-
bras? is a generating function F () = F(9,,...,7;) for weights
with respect to a Lie algebra G of rank /. The exponents of
715---»7; are the components of weights in the weight space
for G. One assumes that the weights in F form complete
irreps of G, and hence one may write

Fm=;nmm,

where y, is the character of theirrep A = (4,,...,4,), and N,
is the multiplicity of A in F (N, usually depends upon other
dummy variables). The characteristic function £, is related
to y, by'

X1 =62/4, (2.2)

with A the characteristic of the scalar irrep. Hence, we have

Amwm=;§mm.

But &, () has only one term whose weight is in the dominant
Weyl sector, say /7, 17?"‘, where the M; depend linearly on 4,
(with integer coefficients). Hence we multiply (2.3) by
Iy~ M‘II,A f’, sum over A4,,..., 4, from 0 to o, and keep
only the terms which are independent of the #,. This simple

2.1)

(2.3)
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instruction transfers a GF for weights into the GF for irredu-
cible tensors.

For Lie superalgebras the situation is more complicated
for two reasons: (1) there is no one-to-one correspondence
between the set of multiplets of / integers and the labels
{ay;...;a;) of the irreps; and (2) there are typical and atypical
representations, for which completely different character
formulas have to be used. In fact, characters for atypical
representations of classical Lie superalgebras are not known
in general, except for superalgebras of series A and C (see
Ref. 13).

Classical Lie superalgebras’ are divided into two
classes: class 1 includes the superalgebras spl(m,n) and
osp(2,2n); and class II consists of osp{m,n) (m2) and the
exceptional algebras osp(4,2;a), F(4), and G(3). One can
choose a Chevalley basis for the Lie superalgebra, in which
the basis elements are given by &,(i = 1,...,/; | = rank of the
superalgebra) and elements associated with positive and neg-
ative roots. Kac”® showed that it is always possible to take a
set of / simple roots such that only one simple root is odd. Let
e; (i = 1,...,/) be the corresponding root vectors; then the
Cartan matrix

cij =2e;s ¢)/ (e ) (2.4)
is determined by a Dynkin diagram and (e;, ¢;) is the bilinear
form in weight space induced from a fixed nondegenerate
bilinear form on L (see Ref. 8). Kac gives a table of Dynkin
diagrams for all classical Lie superalgebras.® They consist of
a set of nodes, connected by lines, and only one node (the
colored node) corresponds to the odd simple root.

Finite-dimensional irreducible representations of Lie
superalgebras are determined by their highest weight A, and
characterized by the “Dynkin labels” (a,;...;a,) associated
with the nodes of the Dynkin diagram. All numbers q; are
non-negative integers, except for the label a, associated with
the odd node. For Lie superalgebras of class I, ¢, can be any
complex number, and vice versa; with every complex num-
ber and set of / — 1 non-negative integers there corresponds
one finite-dimensional irrep. In fact, class I superalgebras
have a u(1) subalgebra in their Lie algebraic part, and a, is
the u(1) label associated with the highest weight. When deal-
ing with generating functions, however, it is natural to con-
sider only integer values of labels (because labels appear as
exponents of some dummy variables in polynomial expres-
sions). Therefore, we shall restrict ourselves to the represen-
tations for which @, € Z. This restriction is not as drastic as it
seems at first sight; branching rules for irreps with a,¢ Z can
be easily deduced from those with a, an integer. Polynomial
tensors in an irreducible representation are most interesting
when the representation is the defining or the adjoint repre-
sentation, and these irreps have a, € Z.

For Lie superalgebras of class II, a, cannot belong to a
continuous range of values, as was the case for class I, but we
still do not have the property a, € Z. However, the irreps are
now also characterized by the / — 1 labels g, (i 5) and a label
b, which is a linear combination of some a,’s (including a,)
and which satisfies b € Z. Kac”*® gives a list of these linear
combinations of the a,’s for all superalgebras of class II. So,
instead of using (@;;....q;) as labels, we rather use
(Ao ih)) = (@y5..58,_ 1 ; B; a, 1 ;...;a;). This is a set of I non-
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negative integers, and they are easy to deal with in the GF
technique. Unfortunately, not every set of / non-negative in-
tegers corresponds to an irrep of the Lie superalgebra: there
are certain *“‘consistency conditions” for low values of b (see
Kac”® for general consistency conditions, and Secs. V and
VI for examples). This does not really hamper the GF tech-
nique; one can sum over all integer values of
@y _y, by a,  y,...,q;, and in the final result disregard the
terms which do not correspond to irreps of the Lie superalge-

bra. .
The most peculiar feature of Lie superalgebras is that

they have so-called typical and atypical representations’?
[except for the superalgebras osp(l,2n), which have only
typical irreps]. Typical representations have properties anal-
ogous to those of finite-dimensional irreps of Lie algebras,
and are relatively easy to handle. Atypical representations
are much harder to deal with. One cannot avoid atypical
representations by restricting oneself to typical irreps; in the
decomposition of the tensor product of two typical represen-
tations, atypical parts can appear. Let L = L, + L, be a Lie
superalgebra with M odd positive roots; then the decomposi-
tion of a typical irrep of L into representations of L, contains
in general 2* L irreps. An atypical representation does not
satisfy this property; the atypical irreps in Secs. IV-VI con-
tain 2™~ ! L, irreps. In fact, Lie superalgebras also have
indecomposable (i.e., reducible but not completely reduc-
ible) representations. The invariant space and factor space of
such indecomposable representations consist of two “neigh-
boring” atypical representations; the indecomposable repre-
sentations have then the same shape as a typical representa-
tion. Obviously, the weights of such an indecomposable
representation are the same as the weights of the direct sum
of two atypical irreducible representations. In the GF tech-
nique, one deals with transforming weights into irreducible
tensors. Therefore, whenever an indecomposable represen-
tation appears (e.g., in the decomposition of a tensor pro-
duct), the GF technique transforms it into two atypical ir-
reps. So, instead of finding an indecomposable
representation, we find its invariant space and its factor
space.

Let us finally discuss how to construct GF’s for Lie
superalgebras. If L = L, + L, is a Lie superalgebra, let 4
denote the set of roots of L, 4, the even roots, 4, the odd
roots, and 4, the odd roots 8 for which 281is not an even root.
A superscript + implies the positive roots in each set. We
define

1 1
Po=— Y & p1=— Y B p=po—p:
2 aedg 2 Bed |t
(2.5)
Then an irrep with highest weight A is typical if and only if®
(A +p,B)#0, VBed . (2.6)
In particular, we have®
B.8)=0&peAd,. (2.7)

The typicality conditions (2.6) can be translated in terms of
linear conditions for the Dynkin labels (a,;...;2;) of the repre-
sentation; these conditions are summarized by Kac?® for all
classical Lie superalgebras. If A is the highest weight of a
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typical representation of L, then the character for this repre-
sentation is given by®

X =K7Y e+, 28)
we W
L, 0P+ 077
K-1=_252 (2.9)

naer+(77a/2 -7~ a/2)’

where 77 = (,,...,;) are dummy variables carrying the com-
ponents of weights as exponents, W is the Weyl group of the
even part L, and €(w) is the sign of w. Character formulas for
atypical representations are not known in general, and for
the particular cases where they are known they look quite
different from the expression (2.8). Therefore, difference pre-
scriptions must be given in order to obtain GF’s for typical
or atypical representations. For the Lie superalgebras we
deal with in Secs. III-VI, typical as well as atypical represen-
tations are known'*2°, and we find the following expression
for the character of the atypical representations of L [where
L =osp(l,2), spl(l,2), osp(3,2), or osp42). Let
B, €A " = {B,,....8,},A bethe highest weight of a represen-
tation, and

A +p,B)=0. (2.10)
Then this representation is atypical (of type i: at i), and
W yp a2 +0707

Ha cag (na/Z -7 — a/2)
N
X S P A0 el P Y
Bied

Xl 75wy TP,

we W,

2=

(2.11)

g
where W, = {we W|w(B;) = + B,}, and—" ~is written
above the term to be deleted.

Just as for Lie algebras, the starting point is now a gen-
erating function F () = F(n,,...,n7;) for weights, such that the
weights in F () form complete irreducible representations of
the Lie superalgebra L. This includes of course typical (t) and
atypical (at) representations

Fin) = ;X}. (N, + 3 ‘Z)xil‘“’(n)N,‘- (2.12)
(t] T plati
Multiply F (5) by X (7)
7, ,.(1—77°)
K(p) = (2.13)

Hﬂ€41+(1 + URB)

In this multiplication, a denominator factor of the form
(1 + %) is a formal notation for the power series expan-
sionl—95~% 492 —..=32_,(— 75 #). This trans-
forms (2.12) into

K(mFin) = z( > e(w)n"*“f”)zvl

At \we W

+3 > KN, (2.14)
i pati)

The coefficient of N, has only one term with weight in the

dominant Weyl sector, say 7,7}, and the weight coordi-

nates are chosen such that the M, depend linearly on the
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representation labels A,,...,4; with integer coefficients. Be-
fore we do the same trick as with GF’s for Lie algebras, we
have to investigate whether the dominant terms (i.e., terms
with weights in the dominant Weyl sector) in the second part
of (2.14) do not interfere with the dominant terms in the first
part. The dominant terms in the second part of (2.14) come

from
7t (2.15)
i (18
which gives terms of the form
UL AR AN 2.16)

But, since p is of type (ati), (z + p, 8;) =0, and (2.7) then
shows (i + p — kBB,, B;) = 0. Hence, all the terms in (2.16)
correspond to highest weights of atypical representations.
Consequently, the dominant terms in the second part of
(2.14) will never interfere with dominant terms correspond-
ing to typical representations. We therefore obtain the fol-
lowing prescription: multiply (2.14) by II,n,” Miy :-l", sum
overA,,..., 4, from 0to o, and keep only the terms which are
independent of the 7,. This will transform a GF F(n) for
weights into a GF G '(4 ) for typical representations. Because
wesum over allA; values from0to «, G '(4 ) consists of three
parts.

(1) This part is a generating function G (4 ) where the
exponents of 4,,..., A, are labels of typical representations
only.

(2) This part is a function where the exponents of
Aj,..., A; correspond to atypical representations only. This
part, however, does not give the correct multiplicity for the
atypical irreps since (2.16) shows that there is interference
among the atypical representations themselves.

(3) This part is a function where the exponents of
A,,..., A, are labels of nonexistent representations (i.e., labels
which do not satisfy the consistency conditions). These
terms appear because we summed over all non-negative in-
teger values of 4,,..., A,. However, the atypicality conditions
and the consistency conditions are well known in terms of
the labels (4,;...;4;), so it is easy to subtract parts (2) and (3)
from G '(4 ), leaving only G (4 ). So, we have given a general
prescription for finding a GF for multiplicities of typical
tensors, starting from a GF for weights. This solves the prob-
lem only partially; we also need to know how to find the GF
part for atypical representations. It is fairly difficult to treat
this in general, but Secs. IV-VI show how to deal with this
problem in practice.

l. GENERATING FUNCTIONS FOR OSP(1,2)

The Lie superalgebra osp(1,2) contains as even part the
Lie algebra so(3) and as odd part the two-dimensional so(3}
tensor (spinor). All representations of osp(1,2) are typical.
The osp(1,2) irreps are known to be “dispin,”'** i.e., when
decomposed into so(3) irreps they reduce as (@) + (@ — 1) [we
use twice the angular momentum label for so(3) irreps]. The
Dynkin label of the osp(1,2) irrep is then (@) (@ € Z , ); (0) is the
trivial representation, (1) the defining representation, and (2)
the adjoint representation. There are two possible gradings
for a representation space: the so(3) parts (g) even and (@ — 1)
odd [(@),+(@—1)), or (@ odd and (a—1) even

l(@); + (@ — 1)o].
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The character (2.8) for a representation (@) of osp(1,2) is
given by

Xo =0 =97 " ==Yy —97)).
From this we obtain the character generator

& 1+4
F(p;A) = aAdd= . 32
(77 ) a;QX() (I—A”])(l—A'r]_I) ( )

Since osp(1,2) D so(3), (3.2) is also a GF for so(3) weights [of

complete so(3) irreps] and (2.3) shows how to transform so(3)
weights into so(3) tensors:

Gid)= [t -7l 4) $nL]

(3.1)

ex(7°)

{3.3)
The ex(7°) is an instruction to keep only the terms indepen-
dent of 7. We obtain

G(L;A)=(1+4)/(1—AL), (3.4)

which is the branching rule GF for osp(1,2) irreps (@) into
so(3)irreps (/). Let G(L; A) = 22_o(Z;c L ') A% thenc,, is
the multiplicity of the so(3) irrep (/) in the decomposition of
(a). Clearly, (3.4) gives the dispin structure again.

If H (A } is an osp(1,2) GF, then the corresponding so(3)
GF K (L) is found by “substituting” the osp(1,2}—so(3)
branching rule GF (3.4)

K(L)=[HA)G (LA ™ Nexao

=H(L)+[H(L)—H(0)]/L.

This implies

HA)=[4AKA)+K(—-1))/(4+1). (3.6)
Hence, if an so(3} GF K (L ) is given, of which we know that
the so(3) tensors form complete parts of osp(1,2) tensors, then
{3.6) gives a prescription to transform X (L ) into an osp(1,2)
GF H(A).

Instead of going through so(3), we can also transform a

GF F(n) for osp(1,2) weights directly into a GF G (4 ) for
osp(1,2) tensors by using (2.14):

Gd)={Fml(1—n)/(1 — AN} exop)- (3.7)

Let us now consider some GF’s for polynomial tensors.
In the tensor product of a given irreducible tensor, we main-
tain only the “supersymmetric” parts (i.e., the parts which
are symmetric with respect to the even basis and antisymme-
tric with respect to the odd basis); when applied to the ad-
joint representation this gives the enveloping algebra. The
weight generating function for polynomial tensors in the
osp(1,2) irrep (1), consisting of the so{3) parts (1), + (0),, is
given by

(3.5)

Foy(mU)=(1+ U)/(1 - Up)t — Uy~ (3.8)
Prescription (3.7) transforms this into the GF
Gy(U;d)=1/(1-UA). (3.9)

In (3.8) and (3.9), U carries the degree of the polynomial
tensor product in the irrep (1). If we choose the opposite
grading for (1), namely (1) = (1), + (0),, then the character
GF is

Fgy(mU)=(1+ Un)(1 + Uy~ ")/(1- D),
and the GF for polynomial tensors is given by

(3.10)
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Gq(U;4) =14 (UA + U¥/(1 - U). (3.11)
Polynomial tensors in the osp(l,2) representation
(2) = (2)p + (1), are generated by

GoU;A)=(1+U?4)/(1 - U})1-UA?. (3.12)

Since (2) =(2)p+ (1); is the adjoint representation of
osp(1,2), (3.12) is the GF for osp(1,2) tensors contained in the
enveloping algebra of osp(1,2). The scalars in the enveloping
algebra are then generated by (1 — U %), which shows that
there is only one independent invariant, of second degree in
the generators. The opposite grading (2) = (2), + (1), gives as
polynomial tensor GF
Go(U;d)=1+(UA*>+ U?4%+ U+ U?4)/(1 — UA).
(3.13)
We also determined the GF’s for polynomial tensors in the
seven dimensional osp(1,2} representation.

(3) = (3)o + (2):

G(3)(U;A)

1+ UM+ U1+ A+ A+ A+ U4+ U%4%]
B (1—U1— U431 —U4? ’

{3.14)

(3) = (3) + ()

G(E)(U; A )
=(1-UY""+ [UA+ U4+ AY)+ U4* + 49

+ U1 +4+43%]/(1 - U311 —UA4?. (3.15)
Finally, we consider the Clebsch-Gordan GF for
osp(1,2). In (3.2), the character GF F(7; 4 ) is given. Since the
weights of the tensor product of two irreps (a,) and (a,) are
given by the superposition of the weights of (,) on those of

{a,), and (3.7) shows us how to transform weights into ten-
sors, we find as the Clebsch-Gordan GF

A)= | Fn: 4y 1=
Gty A5 4) = [Fors dFi ) L=
or
(Lt Ao
(T AN — A AN~ 4A)

G4, A3 4)= {3.16)

In the expansion

Gy did)= 5 5 (Seopet s,

a=0a;=0 a
Ca,aya is the multiplicity of the representation (a) in the tensor
product of (a,) and (a,).

IV. GENERATING FUNCTIONS FOR SPL(1,2)

The even part of spl(1,2) is u(1) + su(2). The odd part
consists of two spinor representations with respect to su(2),
with u(l) eigenvalues + 1 and — 1, respectively, and de-
noted by (1,1) and ( — 1,1). The positive roots are given by
45 ={(0,2)} and 4 F = {(1,1), (1, — 1)}. Irreducible re-
presentations of spl{1,2) have been studied by Scheunert et
al.,'> Marcu,'® and Hughes.!” Let (a,; a,) be the Dynkin la-
bels of an spl(1,2) irrep; then a, € C and a, € N. For reasons
discussed in Sec. II we restrict ourselves to representations
with @, €Z, and we denote the labels by (k;j) = (a;; @,).

Sharp, Van der Jeugt, and Hughes 204



When decomposed intou(1) + su(2)irreps (b, /), k is the max-
imum b value andj the corresponding su(2) label /. Also, (%, /)
are the components of the highest weight of {k;j)} in the
weight space determined by the positive roots.

The elements of 4 ;* are(1,1)and (1, — 1), and with (2.6)
they give rise to the atypicality conditions

k=j+2 (atl), (4.1)

(at 2), (4.2)

respectively. The asymmetry in (4.1) and {4.2) arises because
of the conventional® labeling of the irreps: if the irreps of
spl(1,2) werelabeled by (k '; /') withj' = maximum /value and
k’ the corresponding b value in the decomposition into
u(1) + su(2)irreps (b,/ ), then the atypicality conditions would
readk’'=jandk’'= —j'.

By means of (2.8) and (2.11), the characters for typical
and atypical representations are determined [%, and %, carry
the weights in the u(1) and su(2) direction, respectively]

k= —j

o L Y+ s et st =Y
Xicp =

(1—2:7
(4.3)
(keZ jeN, k£i+2, k#—J)

-1 kpi —1 — 1k, —
X{:f}])=(1+771 772)771"7]2“"(1“‘171 'y i 7?2 (4.4)
(1—277

(k=j+2, jeN),
poen LA i — (L i T

(1—n%
(k= ~j, jeN).

Note that {4.5) also includes the scalar representation {0;0).

Character generating functions can now be determined
from (4.3)-(4.5). The character GF for typical representa-
tions (k; j) with k>0 (t + ) is found by taking

In (4.7), the contribution in K °J° and in the atypical irreps
(/ + 2; /) must be subtracted. This results in

FU UK, J; my, 1)
=07 'l + 9 N+ 90 )
X [1/(1 =7, K)1 =51 — 35 V)
M/ —nmKINl —ym; 'KT) — 1], (4.8)

The character generating function for typical representa-
tions (k; j) with k <0 (t — ) is found by summing

3 S a K

P AR
and subtrac:tlng the contribution from the atypical represen-
tations ( — j; j). This gives
FU YK, T, 12)
=97 1+ N1+ ')
X[K /(1 =g K71 =9 )1 =95 V)
—K7Y/(l—q7 9y 'K~V 1= ‘ﬂzK“-a]g-)

Equations {4.4) and (4.5) are used in order to obtain character
GF’s for atypical representations

1K1+ '+ 9 ) KT ]

FUK, T, 75) =
P (L= mKT L — ;'K T)
(4.10)
149K~
F(“z)(K",; 771’ 772) = —1 j_‘nl 1 1 —1
M= KN -y 5, K™ J)
(4.11)

The complete character generating function is then
F(K, J, 7 1’2) =F(t +) +Flt —) +F(at 1)+F(312)’
(4.12)

and when expanded in power series, the coefficient of K *J /
in (4.12) is the character of the spl(1,2) irrep (k; j).

i i X, K5, (4.6) The GF F(K, J; 7,, 7,) can be used to obtain the GF for
K=0j= branching rules of spl(1,2) into u(1) + su(2). Such a function
which is is transformed to u(1) + su(2) tensors by means of
7 'l + 10 W+ 90 ') @) [FK, T 71 )1 = 7301 ~ 1L ) ™  exiey- (4.13)
(1 =K1 — 7)1 =57 ) This leads to
J
H(K,J; 9, L)
=@ V497 'L+ + WA =K1 —IJL)N T +K g7 T+ 97 L+ g0+ ) [0 —97 'K T
X(1=JL)7 = (14972 + 97 'L) - (KT + K7
X(1—mKJIL)™ — (7K =L+ K"+ 97 'K~ 97K
— 7 K= 1)1 —q7'KUL)L
(4.14)

When appropriately expanded in power series, (4.14) is equal
to

o0

HEK JnuL)= 3 E(zck”m';L) K

k= —w j=0
(4.15)

905 J. Math. Phys., Vol. 26, No. 5, May 1985

—
and ¢, ; ,,; is the multiplicity of the u{1) + su(2) irrep (n; /) in
the decomposition of the spl(1,2) irrep (k; j).

Finally we consider the problem of transforming an
spl(1,2) weight GF F(%,, 7,), of which we may assume that
the weights in F (5, 1,) form complete irreps of spl (1,2), into
a GF for spl(1,2) representations. In Sec. II we showed that
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[ (1 —=n 2mm; ! =
F(1,, 72) = S N,KM (4.16)
| ' (1+7m ])(1 + 7 1 1)(1 i/ 'K N —~7; J) ex(7°) k,jz=0 K

and
[ (1—2n, 2)77177; ! &, :
F(n,,15) ] = 3 NGK 4/ (4.17)
T U g D+ g s ) — K Y = 757 ) L 2= *

gives the correct multiplicity N, ; (where N, is a function of some other variables) for all typical representations (k; j) with k>0
(k #j + 2) and for all typical irreps (k; j) with k<0 (k # — j), respectively. Consider now the multiplication of F(7,, 7,) by

(=5 3mms /0 + ;)
where(1+nm; ) '=1—nm; '+ 9ins * —

(4.18)

- . In (4.19) we list the terms with weight in the dominant Weyl sector (i.e.,

with 77, exponent positive) after a character is multiplied by (4.18)

k—1

X minh + 7

(at 1),

Xk 7Ny,

{at 2),

perrct ek "y 1)["7—J+]”I£_l

75

Since (4.19a) and (4.19¢) do not contain any terms with weight of the form (%, j)

(1—m, 2)771"72—1
(14+7m; Y1 — 77 K1 —n;7 )

[F {171, 12)

ex(7°)

gives a GF with the correct multlphcity N, for at 1 representations (k; j) =

— 9T e (= Y]+ (= 1)

(4.19a)
(4.19b)
(4.19¢)
= (j + 2, ) it follows that

(4.20)

(J + 2, /). Of course, (4.20) also contains terms

K *J J corresponding to typical representations (for which it gives the wrong answer). It is easy, however, to keep only the

atypical part in (4.20). Indeed,

(1—m; 2)771772- '4?

G™ K, J)= [F(ﬂn 7)

(1+mm Y1 =774 7'K)1— 55 '47) Lx(va”)

(4.21)

takes out the part of (4.20) consisting purely of terms K/ +2J /, Hence, (4.21) is the GF corresponding to at 1 representations.

We make a similar analysis for the multiplication by
(1= /(L + 97 'Y,

(4.22)

The terms in the dominant Weyl sector after multiplying a character by (4.22) are given by

X(;c)j) O D N A

(at 1

X+ im0t it

{at 2),

Xk o+ 771772

— s 4+ (= )] + (= 1)1,

(4.23a)
(4.23b)
(4.23¢)

Expression (4.23a) does not contain any weights of the form ( — j, /), and (4.23b) only gives a contribution %°%3 of the form

77 /n% . Hence, it follows that
(1—7;2)

G'(K,J)= | F(n1, 172)

is the GF for at 2 representations (
in fact

G"AK,J)=G'(K,J)— G’'(0,0). (4.25)
Only the multiplicity of the scalar representation re-

mains to be determined. Since F(7,, 77,) consists of char-
acters of spl(1,2) irreps, we see from {4.3)—(4.5) that

[F (1, 7)1 — 77 9] extn®) = Noo + N1 (4.26)
But N,, follows from (4.16), hence N, is immediately deter-
mined from (4.26). The total GF is then found as follows: we
subtract the atypical parts in (4.16) and (4.17), and add the
functions G, G2 and N,

This procedure is now applied in order to obtain polyn-
omial tensor GF’s in a given representation (k ’; /') of spl(1,2).
Let a be the even weights, and 3 be the odd weights of (k '; j');
then the weight GF for polynomial tensors in (k ’; /') is given
by

—J; j)ifj> 0. So, we have
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(4.24)

(1470 g N1 —md 'K 71— 557 'AT) Lexea

-
I,(1 + Urf)
I, (1 — Up)
In (4.27), U carries the degree in the tensor product. When

F;.. (11, 15 U) is transformed into the corresponding GF
Gy (K, J; U) for spl(1,2) tensors, then

Gy K J; U) = E(ZC,W ) K4,

and ¢, ;, is the multiplicity of the irrep (k; /) in the supersym-
metric tensor product of u copies of (k ; j'). Note that (k '; j')
admits two possible gradings: one for which the highest
weight state is even [denoted by (k '; /)], and one for which
the highest weight state is odd [denoted by ( k ; j')]. We de-
termined the GF’s (4.28) for (k '; /') = (1; 0), ( 1;0), and (1; 1)

Fyer,py(m, 12 U) = (4.27)

(4.28)

G(,;o,(K, S U)=1+UK/(1-UJ), (4.29)
G g (K J; U)=(1+ U+ UVK /(1 - U?)
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+ UK /(1 — U1 — UK)
+ UK ~Y(1— U1 - UK,

(4.30)
Gy (K, J; U)
=(1-U)"+(U*+ U+ Uk?
+ UK ~\)/(1 =U)1 —U?+ [UKJ
+ U+ KUY+ UKI /(1 - U)
X(1— U1 — UT?. (4.31)

Since (1; 1} is the adjoint representation of spl(1,2), (4.31) is
the GF for irreducible tensors contained in the enveloping
algebra of spl(1,2). In fact, (4.31) gives the complete structure
of the spl(1,2) enveloping algebra decomposed into spl(1,2).
Another application consists in obtaining the Clebsch—
Gordan GF for spl(1,2). Let us consider, for instance, the
tensor product of two at 1 representations (k,; j,) and (k,; /»).
The weight GF for their Clebsch—Gordan serties is given by

Fee ”(Kv Ji 7y "72)F(at ”(K2, I3 M1s M2)s (4.32)

where F® ! is determined in (4.10). Then we use the above-
mentioned procedure to transform (4.32) into a GF for
spl(1,2) tensors. This results in

G(Ky,J;Kydy K, JT)
K*K2K?
T (1= KKK )1 — KK\ JT)(1 — KK,JU,)

N K*K?K2J
(1 — KK JT)(1 — KKJT,)
The coefficient ¢, ; , ;. of K YK 572K %7 in the expan-

sion is the multiplicity of the spl(1,2) irrep (k; j) in the decom-
.|

(4.33)

position of the tensor product of the two atypical representa-
tions (ky; j,) and (ky; j5).

V. GENERATING FUNCTIONS FOR OSP(3,2) AND
BRANCHING RULES TO SUBALGEBRAS

The even part of osp(3,2) is sp(2) + s0(3)=su(2) + su(2).
The odd part consists of a tensor of type (1,2) [i.e., spinor
with respect to sp(2), vector with respect to so(3)]. The posi-
tive roots are given by 4, = {(2,0), (0,2)} and 4
= {(1, —2), (1,2), (1,0)}. Irreducible representations of
osp(3,2) have been studied in detail.'®?° If (a,; a,) are the
Kac—Dynkin labels of an osp(3,2) irrep, then the label b (dis-
cussed in Sec. II) is given by

b=a,—}a, (5.1)

We use the labels (g;p) = (; a,) for the osp(3,2) irreps. Then ¢
and p can be any non-negative integer, and the only consis-
tency condition is

g=0=>p=0, (5.2)
implying that representations of the form (0; p) (p #£0) do not

exist. The elements of 4 * are (1, — 2) and (1,2), and with
(2.6) they give rise to the atypicality conditions

p+24=0, (5.3)
p—29+2=0, (5.4)

respectively. The first condition (5.3) is satisfied by the trivial
representation (0; 0) only; the second condition (5.4) is satis-
fied by representations (g; 2q — 2) (g = 1,2,3,...). All other
representations (g; p) are typical. The eigenvalues of the sp(2)
and so(3) diagonal operators on the highest weight of an
osp(3,2) irrep (¢;p) are g and p, respectively.

The character (2.8) for a typical representation is given
by [17, and 7, carry the weights in the sp(2) and so(3) direc-
tion, respectively]

P+ Vg Yon? + 7 m e+ o o)

X; - — _
wr (=90 Vo, —m57 )

X~ Pt — i VP

The character {2.11) for an atypical representation
(g: P) = (g5 29 — 2) with g>2 is

(at)

Xan = [ '+ 91 Vg Jnims 2+ P
— @02+ 00 Vs Vo s+ i )]

X [0 =i A — 9 )] (5.6)

Equation (5.6} is not valid for the “truncated” atypical repre-
sentation (1; 0). So there remains

X:??O) =+ 0+ 14957 (5.7)

XYoo = 1. (5.8)
Character GF’s can now be determined. From (5.5) we
calculate 22_ o 2°_ oY, @ P7, and subtract in this result

the nonexistent part corresponding to representations (0; p).
We find
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1 —gq+ 172, p+1 —q+1/2,, —p—1
— 1y mr + 7, ).

(5.5)

—
FYn,, 15 Q, P)
__ @+ OYmta+m +u Y
(1—=7Q)1 —7;'@)1 —n,P)1 —n; 'P)

This is the character GF for typical representations. In fact,
in (5.9) the contribution coming from atypical representa-
tions (g; 2g — 2)should be subtracted. It is much easier, how-
ever, to leave (5.9) as it stands; we shall use the expression
(5.9) to obtain other results and then only in the final results

subtract the contribution coming form atypical irreps. Anal-
ogously, the summation over (5.6) gives

Fms 12 Q, P)
={(-m —n )+ Q1+ (m+ 149"
XM +1+9;73)] + Py, + 15 ) — PO,
+ L+ 97 Y2 + 27 N/ —9,Q)
X(1 =707 '@)1 —n,P)1 — 57 'P).

(5.9)

(5.10)
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Again, in (5.10) only the part with p = 2¢g — 2 should be
maintained, but it is easier to work with (5.10) as it stands
and keep the atypical part of it only after the function has
been transformed into another GF.

The character generating functions can now be used to
find branching rule generating functions. We first consider
the chain osp(3,2)—sp(2) + so(3). Since 5,(resp. 7,) carry the
sp(2) [resp. so(3)] weights, we determine

1—ni \[(1—-%
F“’(n,ﬂ;Q,P)( )( . 5.11)
[ s 1= 0,7/ \1 — 7,8/ Ly

where T (resp. S) carry the sp(2) [resp. so(3)] representation
labels. This gives the GF

[OT + QS? + QP? + PQ2ST + Q252 + Q2P?  (5.12a)
+ Q*PS+ Q°1((1 — QT)(1 — PS)] ™!
-Q (5.12b)

Obviously, — Q corresponds to the atypical representation
(1; 0) and is therefore deleted. Equation (5.12a) is the GF for
branching rules for typical osp(3,2) irreps (¢;p) into
sp(2) + so(3}irreps (¢, 5), and (5.12a) gives the correct branch-
ing rule only when p#2g — 2. If p = 2¢ — 2, the representa-
tion is atypical, and then (5.10) is used to obtain the branch-
(@T + QS*+ Q*PST + Q%S ?%/(1 — QT)(1 — PS)).

(5.13)

The GF (5.13) gives the correct branching rule for all atypi-
cal representations (g;p) = (g; 2¢ — 2), including (1;0). It is
easy to subtract the typical part from (5.13). There remains
]

(@T + OS? + P?Q2S*T + P2Q2S%)/(1 — P?QS>T).
(5.14)
The final GF is now found by subtracting the atypical part in
(5.12a), adding (5.14), and adding the result for the scalar
representation. This gives

G PATS)
=1+ (QT+ QS*+ QP* + PQ’ST + Q°S* + Q*P?

+ Q?*PS+ Q°%/(1 — QT)(1 — PS)

_ (Q2P2T+ Q2P2 + P2Q2s2

+ P4Q3SY)/(1 — QP2TS?). (5.15)
When expanded, the GF G(Q, P, T,5) =23, , (2, g
X T'S°)Q °P? gives the multiplicity ¢ ,,, of a representation
(¢, 5) of sp(2) + so(3) in the decomposition of any (typical and
atypical) osp(3,2) irrep (g; p). It follows from (5.15) that a
general typical irrep (g; p) (¢>3, p>2) decomposes in the
sp(2) +so(3)  irreps  (g.p), (g—1,p—2), (g—1,p),
(q - l’p + 2)’ (q - Z,P - 2)’ (q - 2’p)’ (q - 21? + 2)’ and
(@—3,p), and that a general atypical irrep (g;p)
=(g;29 —2) (¢>2) decomposes in (g,p), (¢9—1,p)
(g—1,p + 2),and (g — 2, p + 2), aresult confirmed in Refs.
18 and 20.

It is easy to calculate the sp{2) + so(3) tensors in the

enveloping algebra of osp(3,2). The weight-generating func-

tion for polynomial tensors in the adjoint representation of
osp(3,2) is

(14 V)1 + Vg3 )1+ Vs 31+ Py D1+ Vo 'g3 )0 + Vg 'y %)
(1—=Un}i1 = U)1 — Uy 31— Un3)1 - U)1 — Uy, '

(5.16)

where U carries the degree in the even generators, and ¥ the degree in the odd generators. Transforming (5.16) into
sp(2) + so(3) tensors (¢, s) by means of an instruction as in (5.11) gives

GUV,T,S)=[(14+V*+V*+ V) +(V+ V> + VST + 2S’TU + S’TU* + TU + TU?
+(V2+ VS T? +2S*T?U+ S’T?U? + 25U+ 25U+ S*+ SU+ T* U+ T U* + 22U}
+ VS T+ 2S*TU + S*TU? + S*TU 4+ 2S*TU* + S*TU* + T3* 4+ T3*U + TU + 2TU?

+ TU¥1/(1 — U1 — US (1 — UT?).

(5.17)

From (5.17) we obtain the GF for sp(2) + so(3) invariants in the enveloping algebra of osp(3,2):

(14 V24 V44 V42U W2 42UV 4 /(1 — U

(5.18)

The two denominator factors correspond to the sp(2) and so(3) second-order invariants, and (5.18) shows that they are the only

functionally independent subalgebra invariants.

The Lie superalgebra osp(3,2) contains osp(1,2) as a maximal subalgebra. In this chain the adjoint representation

(g; p) = (2;0) of 0sp(3,2) decomposes as (3) + (2) of osp(1,2), where (3) = (3), + (2)o» and (2) = (2), + (1), is the adjoint represen-
tation of osp(1,2). It is now an easy exercise to calculate the osp(1,2) scalars in the enveloping algebra of osp(3,2). Indeed, the
GF G ) (V; 4 ) for polynomial tensors in (2) is given in (3.12), and the GF G3,(U; 4 ) for polynomial tensors in (3) is given in

(3.15). Hence, the GF for osp(1,2) invariants in the osp(3,2) enveloping algebra is

[Gay(V; 4 _I)G(i)(U§A ) exiays {(5.19)
or, explicitly,
1+ U*+ V(U3+ U )+ VAU?+ U +2U4+ VU +2U> + 22U+ U+ VYU + U?) (5.20)
(1=U3)1=V3H1-UW? ’ )
-
where V' denotes the degree in the osp(1,2) generatorsand U appear in (5.20) shows that osp(3,2)—osp(1,2} is a zero miss-
the degree in the osp(1,2) tensor (3). The denominator in  ing label problem.

(5.20)is interpreted as follows: ¥ * corresponds to the osp(1,2)
Casimir, and U? and U?V? are the osp(3,2) second- and
fourth-order Casimirs. The fact that no other denominators
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We can also determine the branching rules for osp(3,2)
irreps into representations of its maximal osp(1,2) subalge-
bra. For this task, we make use of the branching rule GF
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G(Q, P, T, 5)intosp(2) + so(3}irreps (¢, s); the maximal so{3}
(labeled by /) contained in sp(2) + so(3) is projected out by
means of ¢

G PL)=[GQPT™,ST)

X {(1—=SL)1 = TLY1 — ST)1 ™ Jeusoros
(5.21)
and then (3.6) is used to transform a GF G (Q, P; L ) for so(3)
irreps(/)intoa GF H (Q, P; A )forosp(1,2)irreps(a). Weapply
this technique to the atypical and typical parts separately.
Using (5.14), the GF for branching rules for atypical osp(3,2)

irreps (g; p) = (¢; 29 — 2) into osp(1,2) irreps (a) is given by
H,(Q;P;A)= PZQZA Q2A2+P2Q2A4 .
L—Piod) " {1-Piodl1-P'oA)

For typical representations, we start with the GF (5.12a).

Including also the trivial representation, we find

H({Q,P,A)=1+PO/(1 —PA)1 —PQ)+(QA*+ Q%4*
+ PQ?4%)/(1 - PA)(1—QA)

Q°+ Q%4 +PQ%4 + PQ%4
(1—PA)1—Q4)1—PQ)

(5.23)

i

(I—m -9

When expanded in power series, the GF’s (5.22) and (5.23)
have the form

g(z Cped a)gepr,

and c,,, is the multiplicity of the osp(1,2) irrep (@) contained
in an irrep (g; p) of osp(3,2). Note that (5.23) is only valid for
typical representations; the “atypical terms” appearing in
the expansion of (5.23) must be disregarded. Instead, for the
decomposition of an atypical irrep one uses (5.22). It is easy
to verify that for typical (resp. atypical} representations of
osp(3,2), we have

Copa <2 Capa <1). (5.25)
Cases with c,,, = 2 do occur, and hence there is degeneracy
in the chain osp(3,2}—osp(1,2}. However, the multiplicity is
always less than 2, and in labeling states of an irrep, labels
which assume only a finite number of values are ignored.*!
This shows again that osp(3,2)—osp(1,2) is a zero missing
label problem.

Let us finally consider the problem of transforming an
osp{3,2) weight GF into a GF for osp(3,2} irreps. If F (7, 1)
is a GF for osp(3,2) weights [of complete osp(3,2} irreps],
then the discussion in Sec. II shows that the prescription

(5.24)

{resp.

(5.26)

Fin,
[ (71 72) 1 +7-'m;

gives the correct multiplicity V,, for typical representations
{g; p) but will usually give the wrong multiplicity for atypical
irreps (g; 2q — 2) and for the scalar irrep (0; 0). Consider now
the multiplication of a weight function fby

(=97 )1 =77 /(0 + 957 '73) (5:27)

{the denominator is a formal notation for a power series ex-
pansion) and keep only the terms with weight in the domi-
nant Weyl sector. In {5.28) these terms in the dominant Weyl
sector are listed for fequal to the character (5.5) of a typical
irrep, the character (5.6) of an atypical irrep, the character
(5.7) of (1; 0}, and the character (5.8) of {0; O):

X0 nin; + 71‘1’:2’77’5_2 (qiz), (5.28a)
BT -1 g=1)

Xon: 775, (5.28b)

X : M (5.28¢)

Yoo: L (5.28d)

None of the weights in (5.28a) correspond to highest weights
of atypical representations. Hence, we have shown that the
GF

L—g Y1 -y 2
_(1 : 7 N lm ) _ ] (5.29)
(I +70 M1 =277 QN1 =77 'P) Jexory
gives the correct multiplicity N,, for atypical representa-

tions (g; p) = (¢; 29 — 2). Only the multiplicity Ny, of the sca-
|

[F(n1 72}

G(, 0@ P U)=1/(1-UQ)

G i5(Q P U)=1/(1-U?%+UQ/(1 - U?1-UP?,
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2)(1+1I—l 2)(1'—7]1 lQ)(l"_ﬂZ P) ex(n°)

—_ E quQq;)p
a.p

i
lar representation remains to be determined. Since F (77,, 7,)

consists of weights of complete osp(3,2) irreps, we see from
{5.5)(5.7) that
[Flpy,ml — 7 Y1 =9y 2)]ex(1;°}
=N00_N10+N20+N12- (5,30)
But N, follows from (5.29), and N,, and N, from {5.26}.
Hence the multiplicity Ny, of the scalar representation can
be determined from (5.30). Then, it is easy to correct the GF
(5.26) by means of (5.29) for the atypical irreps and by means
of {5.30) for the scalar irrep. The resulting GF then gives the
correct muitiplicity for all osp{3,2) irreps.

We apply this procedure to find polynomial tensorsin a
given osp(3;2) irrep (g; p). There are two possible gradings for
arepresentation space: (1) highest weight state [ = state with
highest ¢ value in the reduction to sp{2) + so{3}] iseven (g; p);
and (2) highest weight state is odd ( g; p). The weight generat-
ing function is
(1 + UpP)
(1 — Uy?y
where a are the even weights and 8 the odd weights of the
given tensor representation. We determined the polynomial

tensor GF’s for the representations (1; 0), ( 1;0), (1; 1) and
(2; O). The results are (U carries the degree of the tensor pro-
duct in the given representation)

Fip,nu U)= (5.31)

(5.32)
(5.33)
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U1 =U¥+(1+ U@/l —
U2+ U4+ U6

Gu; 1)(Q, P§ U) =

U1 - UPQ),
14+ US

(5.34)

G(z;o;(Q, PU)=

(1-u? 1=-u%1

— Uf)(1 — UQ?)

QU5+Q2U3+Q U4+P2QU2+P2Q2(U2+ U5+U )+P2Q3u4

(1-

U1 - UP?(1 - UQ?
LQU A US+ U+ PPQUU* + U + US+ U®) + PYQ°U°

(1— U1 -

Since (2; 0) is the adjoint representation of osp{3,2), (5.35) is
the GF for irreducible tensors contained in the enveloping
algebra of osp(3,2). When expanded as

Go.(@ P V)= 3(S epul*)07P",

¢, 18 the multiplicity of the osp(3,2) irrep (g; p) in the super-
symmetric tensor product of ¥ copies of the irrep (g’; p').

Vi. GENERATING FUNCTIONS FOR OSP(4,2) AND
BRANCHING RULES TO SUBALGEBRAS

We will not treat osp(4,2) as explicitly as the previous
examples. Most of the resuits will be given only for one class
of representations, namely the typical irreps.

The even part of osp(4,2) is sp(2) + so(4)=~su(2)
+ su(2) + su(2). The odd part consists of a tensor of type
{1,1,1) with respect to the three su(2} subalgebras (i.e., of
spinor-spinor—spinor type}. The positive roots of osp(4,2) are
givenby 4 5~ = {(2,0,0), (0,2,0), (0,0,2)} and A ;* = {(1,1,1),
(L1, = 1), (1, — L1), (1, -~ 1, — 1)]. Irreducible representa-
tions of osp{4,2) have been studied in Refs. 19 and 20. Let
{ay; a,; a;) be the Kac-Dynkin labels of an osp{4,2) irrep;
then the label b (introduced in Sec. II) is given by

(5.36)

b=a,—}a,—}a, (6.1)

We use the labels (p; ¢; 7} =

3P4Q )

{b; a,; a) for the osp(4,2) irreps.
]

172,172,172 12— 172y = V212172, 172
+ 7 Nm

X n = (M0 n; 72 713

(5.35)

I
The labels p, ¢, and r can be any non-negative integer, but we
have the following consistency conditions for small p:

p=1=>g=r, 6.2)

p=0=g=r=0. {6.3)

When an irrep {p; g;r} is decomposed into sp(2} + so(4) irreps
{s,t,u), p is the maximum s value, and g and r the correspond-
ing (t, #) values. Also, p, ¢, and r are the cigenvalues of the
sp(2) + so{4) diagonal operators on the highest weight state
of the irrep {p; g; 7).

The elements of 4 [ are (1,1,1), (1,1, — 1), (1, — 1,1),
and (1, — 1, — 1), and they give rise to the atypicality condi-
tions

2p—qg—r—4=0 (atl), (6.4)
2p—g+r—2=0 ({at2), {6.5)
2p+q—r—2=0 f{at3), {6.6)
2p4+qg+r=0 6.7)

respectively. The fourth condition {6.7) is satisfied by the
trivial representation only.

The characters for typical and atypical representations
are given by (2.8} and {2.11). An explicit form of the character
of a typical representation, with 7,, 77,, 775 carrying the
weights, is given by

+ ,'71— 1/2772-— 172 1/2)

x(nl/Z — 1/277;/2 + ,'71 1/2771/2,’7 - 1/2)(771/2 — 1/27’ 172 + 7, - 1/2,’71/2,,7!/‘2)

X [(my — = Yoz —n5 Ny —
__17[)-1 ~—q—~1 r+1
+1 "y Ty
The character generating function
F(P, Q, R; 0y, 13 M3) =
reads
F(P, Q, R; 1y, 12, 175)
= [“1+P(77t+7?1 2+7 +97 sy
Yt s s s 0 s
lR )]—-1.

o©

E X anPPQRT

pgr=0

+ MM
X(1—17,0)1 — 55 'Q)1 — R )1 — 757

ST g et —
17p—~l g+ 1 —r-—l+171———p+l772—-q—l7’;+1+7h—-p+1,”g+l773—-r—l
—771_P+1772.q~l773—’“l]'

—p+ 1 g+ 1,,r+ 1
/A mm M

(6.8)
(6.9)
‘v 4 i gm0y st
+ 97 s + s s [0 — 9, Y1 — 9 'P)
(6.10)

When ({6.10) is expanded in the form {6.9), it gives as coefficient of P?Q R " the character of the irrep {p; g; r) only when (p; g; 7)

is a typical representation.

The character GF (6.10} is used in order to obtain the branching rule GF for osp(4,2)—sp(2) + so(4)==su(2)
+ su(2) + su(2). Since 7,, 17,, and 7, carry the weights of sp(2) and su(2) + su{2), we have to determine
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(1 =731 — 7)1 —73) ] ’ (6.11)
ex{n°)

[F(P’ O T e M) W1 = 7T N1 = 1,0
where S carries the sp(2) label (s} and 7, U carry the so(4)~<su(2) + su(2) labels {¢,%). This gives rise to
GYP,Q R;S, T,U)
=P2QRTU/(1 — QT)1 — RU)+ [1 +(P+ P*(QR + RT + TU + QU)
+PYQ*+4+ T?*+ R?*+ U?+ PSQT + PSRU) + P*1/(1 — PS)(1 — QT')(1 — RU). (6.12)
When {6.12) is expanded in the form
S (S STV PrOR"

DT S, 8,4
Cpgrsr 18 the multiplicity of the sp(2) + so(4) irrep (s,7,4) in the decomposition of the osp(4,2) irrep (p; ¢;7) if and only if (p; ¢;7) are
the labels of a typical representation of osp(4,2) (with p>2). When p = 1, we must have ¢ = 7, and the decomposition reads
(PS+POR + PTU)/(1 — QT)(1 —RU), {6.13)
and when p = 0, then ¢ = r = 0, which is the trivial representation. The decomposition of atypical representations can be
obtained by making use of (2.11) or of the analysis in Ref. 19. We find

G P, 0, RS, T, U) = [(1 — PS)1 — QT)1 — RU)]~'[1 + P(TU + TR + QU)

+ P¥T?+ U2+ PSQRTU) + P*TU ], (6.14)
G™%P, Q,R;S, T, U)=[(1 — PS)1 — QT){1 — RU)]~'[1 + P(QR + PSTR + TU)

+PYT?+ R?+ PSRU) + P*TR ], (6.15)
G™¥P,Q,R;S, T, U)=[(1 — PS)1 — QT)(1 — RU)]~'[1 + P(QR + PSQU + UT)

+ PYU? + Q* + PSQT) + P?QU . (6.16)

In the expansion of {6.14}, only the terms P?Q R " with 2p — ¢ — r — 4 = 0 have the correct coefficient, and similar restric-
tions hold for (6.15) and (6.16).

Another maximal subalgebra of osp(4,2) is osp(1,2) + su(2). The adjoint representation of osp(4,2), (2;0;0), decomposes as
(2,0) + (0,2) + (1,2) [in (a, /), a is the osp(1,2) label and / the su(2) label]. It is easy to use the sp(2} + so(4) branching rule GF
(6.12) as an intermediate step: first we decompose the (1,u} irreps of s0{4} into su(2} irreps {/ ) [su(2) is the maximal subalgebra of
so(4)] by means of ©

G'P,QR;S,L)=[GYP,QR;S, T, U1 —=TL)1—UL)1 —TU)]prou9)> {6.17)
and then we use (3.6)

GYP,Q R;A,L)=[AG'(P,Q,R; A, L)+ G'(P,Q,R; —1,L)}/(4 +1). (6.18)
The final result reads

1+PQR+Q*+R3)+PYQ*+R?*+ P>+ P3QRA
(1-PA4)1—QL)1 —RL)(1—-QR)

GYP,Q R;AL)=

+L(Q+R)(P+P3A)+L2(P+P2) + L2P%QR (6.19)
{(1—PAY1 —QL)}1 —RL) (1—QL){1—RL) )
The expansion of (6.19), =, (2, ,Cpqd °L') PPQ°R", gives the multiplicity c,,,,, of the osp(1,2) + su(2) irrep (a,/) in the
decomposition of any osp{1,2) irrep (p; ¢;r) if {p; g; 7) are the labels of a typical representation.
The osp(1,2) + su(2) scalars in the enveloping algebra of osp(4,2) can be determined as follows. We know that the adjoint
representation of osp(4,2) decomposes into the irreps (2,0), (0,2}, and (1,2} of osp(1,2) + su(2). Polynomial tensors in (2,0 are
given by (3.12)

Goo(Us4)=(1+ U 4)/(1-U)1 - U4?, (6.20)
and polynomial tensors in (0,2) by®
G(o,zy(UﬁL )= [(1 - U%)(l - UL 2)] - (6.21)

Let a be the even weights of (1,2), and 8 the odd weights; then the polynomial tensor GF for (1,2) is given by

g1+ 7 — 1 —7n?
G(T,z’(‘/;A,L)_—‘ [ ﬂ( -+ 776) (1 771) ( 172) ] ) (622)
r[a(l - Vﬂa) (1 - ﬂlA ) (1 - 772L) ex(n")
The GF for osp(1,2) + su(2) scaiars in the enveloping algebra of osp{4,2) is obtained as follows:
GU, U, V)= {G(T,zy(V;A, L }qu,O)(UﬁA -I)G(o,z;(Uﬁ L “l)}ex(A%'.“) (6.23)
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or, explicitly,

GU, U, V)=[(1-UN1-UH1 =V {14+ (1 = U V) [VUU3 + VIU? + U3 + U,
+ VU, + U\ U, + U} + UIU3) + VY1 + U3 + U U, + U UL + UU3)

+ VU + U, + U, U, + U, U}) + V6(U§ + UlUg)]}'

(6.24)

In (6.24), U,(resp. U,) carry the degree in the osp(1,2) [resp. su(2)] generators, and ¥V gives the degree in the osp(1,2) + su(2)

tensor (1,2).

VII. CONCLUSIONS

The GF technique for Lie algebras has been extended to
Lie superalgebras. Only a few modifications of the technique
are required, if one deals only with typical representations of
Lie superalgebras. Difficulties arise when one deals with the
atypical representations, mainly because a general formula
for the character of an atypical irrep for Lie superalgebras is
not known. Also, the GF technique does not distinguish
between indecomposable representations and direct sums of
atypical representations of Lie superalgebras.

The structure of the enveloping algebras of osp(1,2),
spl(1,2), and osp(3,2) has been determined in (3.12), (4.31),
and (5.35). From these GF’s, we obtain the following proper-
ty: if a typical tensor (4 ) occurs in the enveloping algebra,
then it occurs as often as (4 ) has states of zero weight [modu-
lo the multiplication of (4 ) by invariants]. This is a weak
equivalent for superalgebras of a theorem of Kostant®*? for
Lie algebras. For Lie superalgebras it seems to hold only for
typical representations, because we have found that atypical
tensors occurring in the enveloping algebra of osp(3,2) ap-
pear four times as often as they have states of zero weight.

For a Lie superalgebra L = L, + L,, representations
are usually studied in an L, basis (i.e., in the chain L—L,). In
this paper, other Lie superalgebra—subalgebra chains, such
as osp(3,2)—osp(1,2) and osp(4,2)—osp(1,2) + su(2), have
been analyzed in detail for the first time. In this context, a
classification of the maximal sub-(super-)algebras of all sim-
ple Lie superalgebras (such as was achieved for Lie algebras
in the paper of Dynkin?®) would be very interesting and use-
ful.
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Irreducible representations of the exceptional Lie superalgebras D(2,1;x)
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The shift operator technique is used to give a complete analysis of all finite- and infinite-
dimensional irreducible representations of the exceptional Lie superalgebras D (2,1;a). For all
cases, the star or grade star conditions for the algebra are investigated. Among the finite-
dimensional representations there are no star and only a few grade star representations, but an
infinite class of infinite-dimensional star representations is found. Explicit expressions are given
for the “doublet” representation of D (2,1;a). The one missing label problem

D (2,1;a)—>su(2) + su(2) + su(2) is discussed in detail and solved explicitly.

I. INTRODUCTION

In the last 20 years, algebraic structures called Lie su-
peralgebras have appeared in various contexts in physics as
well as in mathematics. A classification of all simple Lie
superalgebras was obtained by Kac' and other authors.*?
For a survey of the physical applications of Lie superalge-
bras, we refer to Corwin et al.?

Finite-dimensional representations of superalgebras
have been studied in general,5 and there have also been a
number of case studies (for example, see Ref. 6 and refer-
ences therein). Infinite-dimensional representations have
been classified only for the orthosympletic superalgebras
osp{1,2) (see Ref. 7) and osp(3,2) (see Ref. B8).

The classical simple Lie superalgebras consist of the
spl(m,n) and the osp(m,2n) families, the so-called strange se-
ries P (n) and Q (n), and the exceptional algebras F(4), G (3),
and D (2,1;a) (see Refs. 1 and 3). The general linear superalge-
bras and the orthosymplectic families have been the subject
of several papers.®®!° The exceptional superalgebras F(4)
and G (3) have been studied by DeWitt and Van Nieuwenhui-
zen."! The algebras D (2,1;a) are a one-parameter family of
17-dimensional nonisomorphic Lie superalgebras, which
contain D (2,1) = osp(4,2) as a special case (when a =1).
Among theexceptional Lie superalgebras, the D (2,1;a) series
is certainly the most curious one, mainly because they do not
have a Lie-algebraic counterpart (i.e., there are general lin-
ear, orthogonal, symplectic, and exceptional simple Lie alge-
bras, but there does not exist a one-parameter family of noni-
somorphic simple Lie algebras). It is the aim of this paper to
study the D (2,1;a) algebras and to give a detailed analysis of
their finite- and infinite-dimensional irreducible representa-
tions (irreps).

The even part of the superalgebra D(2,1;a) is L;

= su(2) + su(2) + su(2), and the odd part consists of the ten-

sor product of the two-dimensional tensor representations of
the three su(2) components. The complex parameter a ap-
pears only in the anticommutation relations among the com-
ponents of the tensor operators. The D (2,1;a) algebras are
sometimes denoted by I" (0,,0,,0;) (see Ref. 3), and we give
the relation between the two notations in Sec. 1L

* Research assistant at National Fonds voor Wetenschappelijk Onderzoek,
Belgium.

® Permanent address: Seminarie voor Wiskundige Natuurkunde, Rijksuni-
versiteit Gent, Krijgslaan 281-89, B-9000 Gent, Belgium.
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Therepresentations of D (2,1;a) are studied in the reduc-

" tion scheme D (2,1;a)—su(2) + su(2) + su(2). We show that

in general any D (2,1;a) irrep decomposes into 16 irreducible
representations of the subalgebra, a result which was proven
in a more general way by Kac® for the finite-dimensional
representations. The basis states of a D (2,1;a) irrep are de-
noted by |s,m;t,m,;u,m, ;A ), where s,t, and u are the three
su(2) representation labels; m,,m,, and m, are the three su(2)
weight labels; and A is a supplementary label, the necessity of
which is explained in Sec. IV. The analysis of D (2,1;a) irreps
is based on the construction of operators 4 “** (ij,k = + })
which shift the s and m_, t and m,, and u and m_, labels of a
basis state by i, j, and k, respectively. Such shift operators
have been studied in a general context by Hughes and Yade-
gar.'?

The generalization of a Hermitian operation for a Lie
algebra is a star or grade star operation for a Lie superalge-
bra.'* We investigate the possible star and grade star opera-
tions for D (2,1;a) and find that each of the eight Hermitian
operations on the even part of D (2,1;&) can be extended to an
adjoint (i.e., star or grade star) operation for the superalge-
bra. Then we consider whether the corresponding irreps of
D(2,1;a) are star (resp. grade star) representations. We al-
ways choose the representation space to be a graded Hilbert
space"’ (i.e., with nondegenerate positive definite inner pro-
duct {|)).

For the finite-dimensional irreps, only grade star repre-
sentations are allowed. We find, however, that in general the
finite-dimensional irreps do not satisfy the grade star condi-
tions. For instance, for osp(4,2) only two finite-dimensional
representations are actually grade star irreps, namely the
one-dimensional trivial representation (0;0;0) and the six-di-
mensional standard representation (4;0;0) [the notation
(p;q;r) for a D (2,1;q) irrep is explained in Sec. IV].

Among the infinite-dimensional representations there
are several classes of star representations. Special attention is
paid to a particular representation that reduces into only two
subalgebra irreps, whereas a general infinite-dimensional
star representation reduces into 16 subalgebra representa-
tions. For this ““doublet” representation, all matrix elements
of the generators of D (2,1;a) are given explicitly. We show
that only for @ = 1, i.e., for osp(4,2), can the doublet repre-
sentation be realized in terms of elements of 77(C,C*). This is
the space of holomorphic functions f.C—C* with compo-
nents f; (i =1,2,3,4) satisfying ((Z}_, |f;(z)|*) exp(— |z|?)
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dA (2} < o, where A is the Lebesgue measure on C. The
osp(4,2) generators are then realized as operators acting on
H(C,C*). This result is in fact the analog of the metaplectic
representations for osp(1,2) (see Ref. 7) and osp(3,2) (see Ref.
8).

li. THE LIE SUPERALGEBRAS D(2,1;2)

Scheunert® denotes the D (2, 1;a) algebrasas I' (0,,0,,03),
where 0,,0,, and o, are three complex parameters. At first
sight this gives the impression of a three-parameter family of
superalgebras. However, there is the condition

0',+0'2+0'3=0, (2.1)
and the property that I'(0,,0,,0,) is isomorphic to
I (o1,03,0%) if
(i=12,3), (2.2)

where A € C — [0} and = is a permutation of {1,2,3}. This
shows that the algebras I" (0,0,,0;) form essentially a one-
parameter family. In this section we give the (anti-) commu-
tation relations for the basis elements of I' (¢,,0,,0;), and we
give the connection with the more usual notation D (2,1;a).
The even part of I' (0,,0,,05) is su(2) + su(2) + su(2),
with basis s,,t;,u,(i = 0, + ), respectively, and with nonvan-
ishing commutators
[so’s:t ] = :tsj: ’ [to’tj; ] = iti ’
[otu, )= tu,, [sis_]=2s,
[t+:t— 1= 2t,,
The odd part consists of the tensor product of three two-
dimensional su(2) tensor operators, with components R,

(iyok = + ). The commutation relations between even and
odd generators are given by

[SO!RiJ,k ] = iRi,i,k ’

ol =40,

(2.3)

[u+,u_] = 2“0.

[si R F1/24k ]=R_ 1724,k ? (2.4)

and analogous expressions for [t,R ] and [«,R ]. Finally, the
nonvanishing anticommutation relations among the odd ba-
sis elements are

[Rivn 1212 R s1p1n212] = F205 .,
[Riz—1212R s1002, - 12] = 12045 4,
[R_ 12212~ 120R 2, w1202 ] = F 2058,
[R_12 s1202:R 2 210, -12] = 12058,
[R_1a 12 212R 200, 212] = F05u 4, (2.5)
[R —1/2,1/2, £ /2 Rip 15, +1/2 ] = 4 205u +
[R_izx12512R00 212,212 ]

= 2{0480 & 0o  T3ty),
[R —1/2,F1/2, + 1/2 ’Rl/z, +1/2,F 172 ]

=2 — 0,50 F 0xto + 03Up).

The D (2,1;c) algebra is usually defined by means of its
Cartan matrix 4 (see Refs. 1 and 14)

0 1 a
A=(a,;)=|—-1 2 0] (@eC—{0,—1}), (2.6
-1 0 2

and its generators e,,f;,h, (i € I = {1,2,3}) satisfying the rela-
tions
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[e i1 =8yhi  [hih;] =0,

[(hoe;] =aye  [hisfi] = —ayf

degh, =0;dege, =degf, =0, fori=2,3,
dege, =degf, = 1.

2.7)

The basis elements of D (2,1;a) are then given by
So = (2hy — hy — ah;)/2(1 + a),
s, =1i[[[eye;].e51,,1/(1 +.a),
s_ =i[[[fi/a] /514101 + a),
b= ihzy =/
U = ihs, u_=f;

Ry 212 =4 [ene,]ses],
R_\pp_vnn—1n= A [l /s]
Ripin—1n= —4lene],

R_ 12, —1/2,172 = — i [f.h],
Rija _ 1212 = —Alenes],

R_ 172,172, - 172 = — iA [flf;],

R 12— 12 =Aey,

R_ 11212 =iAf)

In the above, A is an arbitrary factor, which produces a mul-
tiplication by iA 2/2 for the corresponding (o,,0,,05) values of
the algebra. Hence, if we take A = v2 expl(in/4), then the
D (2,1;a) basis elements (2.8) and (2.9) satisfy the I" (0,,0,,05)
relations (2.3)—(2.5) with

2.8)
t+ == ez,

u, =es

(2.9)

(2.10)

In the following sections we shall very often use the notation
of I' (o,,0,,05); obviously, all these results are immediately
transformed for D (2,1;c) by means of (2.10).

(01,0003) =1+ a, — 1, — a).

iIl. INVARIANTS AND SUBALGEBRA SCALARS

D (2,1;a) possesses three independent irivariants I,,[,,
and /. In this section we shall give expressions for 7, and I,
define some scalar operators with respect to D (2,1;a)s;, and
determine some useful expressions between invariants and
subalgebra scalars.

The invariants of the Lie subalgebra of D (2,1;a) are

S*=5,5_+55—5p T? =t t_+13—1t,

Ul=u_u_+u} —ug (3.1
Furthermore, we define
(R XR g2
= z<% 1'1%1'2[[”7 <%]1$Jz|q]>
Xk ko|rk )R, j xRk, {(3.2)

where (|) is an su(2) Clebsch-Gordan coefficient. The sec-
ond-order invariant is then given by

I, =2(R X R — 20,8? — 20,T? — 20,U?,
(3.3)

or explicitly
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12 Rl/2 172, 1/2R

172, = 1/2, — 172
+ R 1 -1nR 11200
+R_ i —12Rin 1210

+ R — 172, — 1/2,1/2R1/2,l/2, —172
—20,8*—20,T*—20,U> (3.4)
We introduce the notation

1 1
§, = 5, +__
Z 2t
| (3.5)
U, = i—\l—z— + 2
and define
cto2 . 9 Z (R XR),[,}OW} —it_p
ij= -1
1
C1oLy 3 (R xR)f})(,i”S My (3.6)
k=1
1
co12 3 (RXRW" e _ju_y.
k=1

The operators (3.6) are subalgebra scalars, i.e., they com-
mute with all the generators of su{2) + su(2) + su{2}. They
are not independent, since the following relation exists:

14 — 4\/§(C(“0’2' o+ C(IOI,Z) + C(Oll,Z))

+ 8I(S2+ T*+ U+ 16(0,S* + 0, T* + 03U

- 32(01S2 +0’2T2+0'3U2), (3.7)
where S * stands for (S %)%, etc. Note that (3.7) gives an explicit
expression for I,. We also obtained another relation, qua-
dratic in the operators (3.6}

VZC 1O [2C 110 4 20, — 40,87 + 0,T? — 03U )]

+ \/ic(lOl,2)T2[‘/§CuOl,2]

+2I, — M0,S% — 0,T* + 0,U?)]

+ \/EC(OU’Z’SZ[\/EC(O“’” + 2]2

— 4 —0,S*+0,T* +0,U%] +4L,8°T?*U?

XL, + 40,8? + 0,T* + o,U?)]

+ 16S*T*U?[(04S? + 0,T* + 0, U %

— 418+ 3T+ 03U =0. (3.8)
Note that (3.7) and (3.8) show that at most one of the opera-
tors (3.6) is independent of $ %, 7%, U %I, and I,. On the other
hand, since D {2,1;a) Dsu(2) + su(2} + suf2) is a one missing
label problem (see Sec. IV), we expect that there is at least one
subalgebra scalar, independent of the subalgebra invariants
and the superalgebra invariants, whose eigenvalue can then
be used to distinguish between independent states with the

same subalgebra labels. The question of the missing label and
a labeling operator L will be discussed in Sec. V.

IV. D(2,1;a) IRREPS AND SHIFT OPERATORS FOR
D(2,1;0) Dsu(2) + su(2) + su(2)

Irreducible representations of D (2,1;a) reduce into the
direct sum of a set of subalgebra irreps, when restricted to
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su(2) + su(2} + su(2). Irreps of su(2) -+ su(2j + su(2) can be
labeled by (s,t,u) where s{s -+ 1), #{# + 1}, and u#{u + 1) are the
eigenvalues of the subalgebra invariants (3.1) S 2,72, and U?,
respectively. From Kac® and a basis for the universal enve-
loping algebra of D (2,1;a), it is easy to find the reduction rule
for D (2,1;a}—su(2) + su(2) + suf2). Let p be the maximum s
value in the reduction of a D (2,1;a) irrep, and let (g,7) be the
corresponding (t,u) values; then (p;g;7) is a good set of labels
to specify the D{(2,1;a) irrep, and the decomposition into
su(2) + su(2) + su(2) is given by

Bar— Y Heulsitu), (4.1)
(s, u)€.7
where
= {(p’qﬂ')!(p —hatirt+ i)a
(p - %’q + i’r:F%)’(p - l9q + 1,"),
p—Lgr+ 1)(p—1grsip— 4 +ir+ %),
P — 39 + b Fi(p — 2,97 (4.2)

Here, i, ,,, denotes the multiplicity of the (s,z,u) representa-
tion. For a general D (2,1;a) irrep, all ., are equal to 1,
except 4, _,,, = 2. Hence, in the middle of this lattice of
{s,2,u) nodes, there is a twofold degeneracy. This implies that
the subalgebra labels are not sufficient to classify the states of
a D(2,1;a} irrep uniquely. Therefore, an operator L, com-
muting with all subalgebra generators, will be introduced in
Sec. V. Then, for (s,t,u) = (p — 1,4,7), the two different L
eigenvalues A4, and A, will solve the degeneracy problem.
The states of a (p;g;7) representation of D (2, 1;a) are then well
defined as the common eigenstates of S %,s,, T 2,2, U 2,u,, and
L, and are denoted as

|s,mg;tm;u,m A ), (4.3)

where m,,m,, and m,, are the s,,7,, and u, eigenvalues, re-
spectively. If (s,1,u} # {p — 1,4,#), A is very often omitted since
for those cases it is unneccessary.

For completeness we give the correpondence between
our labels (p;g;r) and the Kac-Dynkin® labels (a,,a,,

ayb = (2a, — a, — aa;)/(1 + a)) for a D (2,1;a) irrep

p=b/2 g=a/2, r=ay/2 (4.4)

Let {p;q;r) be a D {2,1;a) representation with basis states
{4.3). Then the operator § is defined by means of

Sls,mtm um, A ) =sls,m tm u,m, A ). 4.5)

An equivalent definition is, of course, § = [§? + ] Y2y
Operators ¢ and i are defined in an analogous way.

Next, we define shift operators O “* (i, j,k = + ). Such
operators have been studied in general by Hughes and Yade-
gar'? and have been used to classify representations of
osp(1,2) (see Ref. 7) and osp(3,2) (see Ref. 8). They have also
been used to study representations of Lie algebras (see Refs.
15 and 16 and references therein). For one su(2) algebra with
two-dimensional tensor operator R  , ,, we have the expres-
sions'?

0= —Ry,8+s0+1)—R_,,5,,
o —1/2=R-1/2(§+50) —Ry;s_. (4.6)
The actual shift operators for D(2,1;a)
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Dsu(2) 4+ su(2) + su(2) are obtained from (4.6) by means of a
product rule. For instance,
O —1/2,-1/2—-172

= =Ry St t_+ Ry 1 15 _t_(f + up)
+ Ry, _ 1/2,1/23—(; + fo)u_
—Ryps 12— 1725t + to)(ft + )
+R_ 12128+ St _u__
=R _ 11— 128+ Solt_(f + uy)
—R_1yp 18+ S0t + toJu_
FR 1 1n 128+ SO+ 1B 4 up). (47)

The expressions for the other shift operators O “** follow
immediately from (4.6).
The main property of shift operators is'

0k Is,m,;t,m,;u,mu;/i )

« N|s+im, +it +jm, +ju+km, +kA'),
; | Pt (4.8)
which shows that they shift an eigenstate (4.3) into just one
(or two, in the twofold degenerate case) eigenstate(s) with
unique well-determined subalgebra labels. This is, for in-
stance, in contrast with the operators R, ;,, whose action
upon an eigenstate (4.3) gives a linear combination of states
Is'sm, + it'm, +ju'sm, + kA,
with
t'=t+j, w=u+tk
It is convenient to use normalized shift'?> operators
A "* which are related to the above operators O “* by

AVk= QU [§+ 50+ 4+ )+ 00+ +])
X(@ +ug+ 3+ k)] 2 (4.9)

The whole analysis of D (2,1;a) representations is based
upon relations between quadratic products of shift operators
of the form A “7*'4 % Such a product is called a “scalar pro-
duct” if i’ + i =j' +j =k’ + k = 0; otherwise, it is a non-
scalar product. Note that a scalar shift operator product is a
subalgebra scalar, since it commutes with all su(2)

+ su(2) + su(2) basis elements. The relations between scalar
and nonscalar products are summarized in the Appendix.

The states of irreducible representations of D (2,1;a) are
connected to each other by means of shift operators. If two
states of a representation are not connected to one another
by a shift operator (i.e., if the matrix element of the shift
operator between those two states vanishes), then the corre-
sponding reduced matrix element of the tensor R [1/%1/%1/2]
vanishes, !2 showing that the states are not connected to each

sS=s5s+1i

other by the generators of the superalgebra. Hence, the
|

4 V221241724 IF]/2,$1/2,:F1/2IP_ 1 +%,q+%,r+%>

structure of a D (2,1;a) irrep follows from the analysis of the
shift operator matrix elements, which can be deduced from
(A1)~A6).

The fact that the squares of all shift operators 4 “** van-
ish [relation (A1)}, shows again that a D (2,1;a) irrep (p;4;7)
decomposes in general into the (s,t,u) irreps given by (4.2).
This, of course, is now true for finite- as well as for infinite-
dimensional representations of D (2,1;a). In the infinite-di-
mensional case, (5,7,u) [and hence also (p;q;7)] can be a triplet
of real negative numbers.

On account of relations like (A6}, it is easy to calculate
the I, and I, eigenvalues for a given D (2,1;a) irrep (p;q;r). We
find

(L) = —2[oplp— 1)+ 020+ 03R?], (4.10)
I,y = —16{a,P*+ 0,0% + 0;R* — 20,P?Q?
—20,P°R?*—-20,Q%R?
—2(0,0%+ R *2p + 1)
—20p[20% +2R* +(p+ 1)2p — 1)1},
(4.11)
where we use the obvious shorthand notation

P2 =plp +1),0? = qlg + 1), and R > = r{r + 1). Then rela-
tions (A4)—{A6) can be used in order to determine the matrix
elements of the shift operator products for a general (p;q;7)
representation. When (s,t,u) and (s — 4,z + j,u 4 k) corre-
spond to nondegenerate subalgebra irreps in the (p;q;7) de-
composition, i.e, when (s,z,u) and (s — Lt + j,u + k) belong
to.7 — {(p — 1,4,7)], the following result is obtained:

A 172, —j, — kA — 1724,k IS,t,u)

= — 8k [, 6L (0)f5 ()

X [op + 0,8,(q) + 036, ()] Is,t,u), (4.12)
where
2142, if I>a
172 _ ’ =
Ja (l)_{21+1, if I<a;
20+ 1, if I>a
_1/2 — b b
fa ()= [21, if I<a
s —1, ifi=]
= I+1, ifi= —}.

In (4.12), we have adopted the notation |s,t,u) for a basis
state |s,m,;t,m, ;u,m, ;A ) (4.3), since A is unnecessary and the
expression of the matrix element is independent of the m
values. This notation (|s,t,u) or |s,t,u;A )} will also be used in
the following expressions.

The actions of shift operator products, which connect a
nondegenerate irrep (s,t,u) with the twofold degenerate irrep
(p — 1,4,r), are given by

= —8loplp—1)(2gr +q+r+ogg+1)2pr—r+p—)+orr+1)2g—qg+p—1)}lp— 1+ 4g+4r+14),

A j:l/Z,:tl/Z,:Fl/2A $l/2,q:1/2,il/21p__ 1 i%;qi%,r$%>

(4.13)

= —8{oplp—1)(—2gr—g—r— 1)+ oyq9(g + 1)(— 2pr + r —p) + osrir + 1)2pg — g + p — 1)}
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Xlp—1+4g+4rFd,
A il/Z,fFl/Z.:tl/ZA :Fl/z.:tl/z.q:l/zLD_ 1 ii»quia":ti)

(4.14)

= —8{oplp— 1)(—2gr —q—r— 1)+ oz4lg + V)2pr +p — 7 — 1) + o5{r + 1) — 2pg + ¢ —p)}

XIP—‘ 1 iiyq:‘:i’rii)’
A il/z,:Fl/Z,:FI/ZA IFl/2,j:l/2,j;l/2lP_ 1 ii’q¥i”¢i)

(4.15)

= —8{opp—1)2gr+q+r+ogg+ 1) —2pr+r—p)+orr+ 1) -2+ g9—p}lp—1+4gFirFP.

Irreducible representations of D (2,1;a), or I'" (04,0,,05), can
now be completely analyzed by making use of (4.12)—{4.16).

V. ANALYSIS OF IRREDUCIBLE REPRESENTATIONS
OF D{2,1;0)

We first consider finite-dimensional representations of
D (2,1;a). For such irreps, the {s,7,u) components must satisfy

stu €N = [04,1,3,...], (5.1)
and hence also (p;g;r) belongs to this set. If p>2, g>1, and
r> 1, the (p;g;7) irrep decomposes into the (s,,u) representa-
tions given by (4.2), unless, according to (4.12), one of the
following conditions is satisfied:

op — 0,9 — oy =0, 5.2
o +oylg+ 1) —or =0, (5.3)
op— 0,9+ 04r+1)=0, (5.4)
o +0)g + 1)+ o5(r+ 1) =0. (5.5)

In the latter case several of the matrix elements (4.12) vanish
and the 16-dimensional lattice of {s,t,u) values splits up into
two eight-dimensional lattices. For instance, in the case of
(5.2) the (p;g;r) irrep consists only of

T = {(p,q,r),(p - i’q + %’V:Fi);

P—49—4r—1)
(p - l,q,f),(p - Lq,"‘- 1)’(1’ - I’q - 1,?‘),
P—3g—4r—4k

they are not connected to the other (s*,¢ ",u') values in .7 since
{4.12) shows that

A 172, — 1/2, — 1/2A — 1/2,1/2,1/2]S,t’u> j— 0"
if (s,tu)e 7.

The other eight {s’,# ', u’) values form again an irreducible rep-
resentation, which is denoted by (p —{;,¢ + 47 +4) and
which obviously satisfies again condition (5.2). In fact, (5.2)-
{5.5) correspond exactly with the four atypicality conditions
for D (2,1;a), also given by Kac.® If neither of them is satis-
fied, then (p;g;r) is a typical representation decomposing into
16 subalgebra irreps; if one of the conditions (5.2)—{5.5) is
satisfied, we have a so-called atypical representation,’ which
is in general reducible but indecomposable. Because, in this
paper, only irreducible representations are considered, we
find the “irreducible parts™ of the atypical representations.
If p<2, g<1, or r<1, then we find a truncated (s,7,u)
lattice: only those (s,t,u) values in (4.2) for which none of the
elements is negative appear in the decomposition of (p;g;r}.
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(4.16)

]
Moreover, ifp = 1(g,r>0),0rifg=0(p> 1,r>0),0rifr =0

(> 1,¢>0), then the multiplicity of (s,z,u) = (p — 1,q,7) is
only 1. When g = r = O (p > 1), the representation (p — 1,4,0)
does not appear in the decomposition of (p;0,0). Another ex-
ample of truncated representations is given by the adjoint
representation: if (p;g;7) = (1;0;0} then it decomposes as
{(1,0,0), (3.3,4), (0,1,0), (0,0,1)}; this is the 17-dimensional ad-
joint representation. There are, however, two exceptions to
such truncations, as can be verified immediately from (4.12).

{1) If p = 0, all matrix elements in (4.12) must vanish,
and hence we have to require ¢ = r = 0. This representation
{0;0;0) is the one-dimensional trivial representation of
D(2,1a)

(2) If p = }, the shift operators acting on s = p — } must
vanish. There remain two possibilities.

(@) o52g + 1) = o52r + 1). (5-6)

Then the irrep (};¢;7) decomposes into (},4,7), (0, + 1,7 + ),
and (0,g — 4,» — 1) (the latter does not appear if ¢=0 or
r=20).

®) 052 + 1) = —o3(2r +1). (5.7)

Then the irrep (4;q;r) decomposes into (l,q.7),
(0,g + 1,r — 1) (missing if » = 0), and (0, — 1,7 + }) (missing
ifg =0).

Kac’ also gave the supplementary conditions (5.6) and
(5.7)when p = 1, but did not give the peculiar structure of the
corresponding representations. For osp{4,2), condition (5.6)
includes the case ¢ = r = 0, which gives the six-dimensional
natural representation decomposing into (1,0,0) and (0,1,3).
Note that for osp(4,2) = D (2,1;1) =TI (2, — 1, — 1) the two
lowest-dimensional nontrivial representations have dimen-
sions 6 and 17 (the natural and the adjoint representation),
but due to (5.6} and (5.7) other representations with dimen-
sions between 6 and 17 might occur for @ # 1. For instance, if
a = 2, then according to (5.6}, the lowest-dimensional repre-
sentationof D (2,1;2) = I' (3, — 1, — 2)is the 10-dimensional
irrep (3;3;0) decomposing into (1,4,0) and (0,1,4). More gener-
ally, if « is a positive integer, then D (2,1;a) has a (4a + 2)-
dimensional irrep (4;(@ — 1)/2;0) which reduces into
(3.la — 1)72,0) and {0,a/2,}). If @ is a negative integer
{a@ < — 1), then D{2,1;a) has the { — 4a — 2}-dimensional ir-
rep (4 — (@ + 1)/2;0) decomposing into (1, — (@ + 1)/2,0)
and (0, — (a + 2)/2,}).

From (4.12}-(4.16), the matrix elements of the shift op-
erator 4 ¥ can be determined, up to some arbitrary multi-
plicative constants (which become arbitrary phase factors if
a Hermiticity condition is given for the algebra and if the
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representation is star or grade star). For the missing label
problem, we refer to expressions (5.12)5.16). Then we make
use of relation (5.8) (see Ref. 12) and the Wigner—Eckart!’
theorem (5.9)

(S + i,t +j,u + k;/i '”R [l/2,1/2,l/2]”s’t’u;i )

_ [(2s+ 14202t + 1+ 2)2u + 1 + 2k) ]2
(25 + 1)(2f + 1)2u + 1)

X (s + im; + it + jm, + j;u + k,m, + k;
A'A*|smtmum A ),

R, i |s;mgtum um, A )

(5.8)

=Z(_l).\-’—m;+t’—-m,'+u’—m,"

s’ i s t' 1 t)
X

(—m; i ms) (—m{ Jj m

(Zn & )

X

-m, k m,

X <Sl,t ',u';/l :”R [1/2'1/2'1/2]”S,t,u;ﬂ )sl,t r’u:;/{ :>.
(5.9)

This gives us the proper action of all tensor components R, ;
upon the basis states. Together with the well-known actions
of the subalgebra generators upon the states (4.3), this deter-
mines the explicit forms of the representatives of all the basis
elements of the superalgebra for all irreducible representa-
tions.

The infinite-dimensional representations of D (2,1;a) de-
compose into infinite-dimensional irreps of the subalgebra
su(2) + su(2) + su(2). Several cases are possible, depending
on which su{2) part is infinite-dimensional. For the star or
grade star representations considered in Sec. VI, the subalge-
bra satisfies Hermiticity conditions corresponding to those
for an su(2) or su(1,1) algebra. The unitary su(2) irreps are
finite dimensional, and labeled by / € N, whereas the unitary
irreps of su(1,1) are infinite dimensional, and labeled by / € R
(or, more generally, also by the complex number
= — 1+ ip,p € R)(see Ref. 18). If the even part of D (2,1;)
is, in an obvious notation, su(l,1) + su(2) 4+ su(2), then the
label p may be a real (negative) number, but ¢ and r still
belong to IN. Because of the symmetric contents of the three
su(2) parts in I" (0,0,,05), we shall discuss in detail only the
cases su(l,1) 4 su(2) + su(2), su(2) + su(1,1) 4+ su(1,1), and
su(1,1) + su(1,1) + su{1,1). For all the cases, the general
(p;g;r) irreps still decompose into the (s,?,u) representations
given by (4.2), except when one of the atypicality conditions
(5.2)H5.5) is satisfied, in which case the 16-dimensional lat-
tice of (s,t,u) values splits up into two eight-dimensional
parts. The only difference with the finite-dimensional case is
that now no such truncations of the (s,z,u) lattice appear
when one of the labels corresponds to su(1, 1) (because such a
label can take on all real values). We discuss this for the
following possibilities.

(1) su(1,1) + su(2) + su(2). Now s € R, but t,u € iN, and
this also applies for p,q, and r. The (s,t,u) of 7 (4.2) for which
tand/or u would become negative are deleted. This gives the
structure of all D (2,1;a) irreps in an su(1,1} + su(2) + su(2)
basis.
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Interesting cases occur when “truncations” arise (be-
cause of small g or 7) simultaneously with one of the atypica-
lity conditions (5.2)—(5.5). For instance, when ¢ = r = 0 and
p satisfies op + 0, = 0 (and o,p + 0,70), then it is easy to
see that the irrep (p;0;0) decomposes only into (p,0,0)

+ —4bY) + - 1,00).

When (¢,7)=(4,0), and op —0,g=0 [or, in the
D(2,1;a) notation: p = — 1/2(1 + aj), then the irrep ( — 1/
2(1 + a);};0) decomposes into the doublet of subalgebra ir-
reps (—1/2(1 + @),4,0) + ( — (@ + 2)/2(1 4+ @),0,4). Be-
cause of their simple structure, these doublet representations
will be considered in detail in Section VII. A similar doublet
representation is ( — a/2(1 4+ a);0;4), decomposing into
(—a/2(1 + a),04) + ( — (2a + 1)/2(1 + a),4,0).

{2) su(2) + su(1,1) + su(1,1). Now se€ N, r,ueR, and
only those (s,t,u) values for which s is negative are deleted
from 7. Similarly to the previous case, there are special
representations because of the simultaneous appearance of
atypicality conditions and “truncations.” For instance, if
p=1and g+ ar+ (1 + a) =0, then the irrep (1;¢;7) de-
composes into (1,4,7),(3,9 + 4,7 — i)’ (1g — 47+ 1), (0,7,
(0, — 1,7}, and (0,¢,» — 1). When p = |, there are again the
two possibilities (5.6) or (5.7) with their corresponding reduc-
tion rule.

(3) su(1,1) + su(1,1) + su(1,1). In this case, all 1abels can
be real and negative, and consequently no truncations arise.
All (p;q;r) irreps (p,q,” € R) reduce as prescribed in (4.2), ex-
cept when one of the conditions (5.2)5.5) is satisfied, in
which case the representations split into two parts, both con-
sisting of the sum of eight subalgebra irreps.

The construction (5.8) and (5.9) remains valid in the
infinite-dimensional case, if one takes the ‘““analytic contin-
uations” (see Ref. 18, pp. 195-206) of the expressions for the
Wigner 3j symbols. However, one has to exclude certain pos-
sibilities because of the appearance of denominators like
(25 + 1), etc. This problem has been discussed in Ref. 8. A
detailed study for D (2,1;a) finally showed that we have to
exclude the infinite-dimensional irreps (p;g;7) for which the
su(l,1), label p is 0,4, or 1, or for which the su(1,1), label g or
su(1,1), label ris 0, — }, or — 1. '

Finally, we consider the missing label problem for gen-
eral (p;q;r) irreps of D(2,1;a). As we mentioned before,
(p — 1,4,7) is the only subalgebra irrep in the reduction of
(p;q;7) which appears with multiplicity 2. We define the oper-
ator

L = A 1/2,1/2,1/2A —1/2,—1/2, — ]/2.

(5.10)

Obviously, L is an su(2) + su(2) + su(2) scalar operator, and
hence a good candidate for the labeling operator. In terms of
the scalars (3.6), L is given by

L= — ‘/'z_c(ll(),nﬁ _ \/ic“‘“’z’? _ ﬁc(011.2)§
— 2L3th — 43t (o5 + 1)E + 2)
+ot+)t+2) +os@+ D)@ +2)].  (5.11)

Furthermore, we define states |p — l,¢,7i) (f=1,2) by
means of

A —1/2,-—1/2.—1/2‘p _ %’q+iar+ %)

= |p - 1g11), (5.12)
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A l/2,1/2,l/2lp . g’q — %,r — %)

= |p— 1,4,12). (5.13)
Then (A1) implies
Llp—1gn1) =0, (5.14)
and (4.13) produces
Lip—1,4n2) =Alp— 14r12), (5.15)
where
A= —8{oplp—1)2gr+q+7)
+oyqlg+ 1)2pr—r+p—1)
+osrir + 1)2pg + p — g — 1)}. (5.16)

Suppose we have a (p;g;r) irrep for which (5.16) is nonzero.
Then the above expressions show that we have constructed
the two independent eigenstates of L,|p— l,g,r;
A:) = |p — lg,ni) (i = 1,2), with eigenvalues 4, =0and 4,
given by (5.16). This solves the missing label problem.
When, for some special cases, (5.16) turns out to be zero,
it is easy to see that another choice of L (for instance,
L=A 172,172, — 1/2A —172,— 1/2,1/2) and of Ip - l,q,r;i) gives
rise to a similar result with A, one of the expressions in
(4.14}4.16). If the expression in (4.13) is zero, at least one of
the expressions in (4.14)-(4.16) is nonzero, and then the cor-
responding operator L is a good labeling operator.

VI.STAR AND GRADE STAR REPRESENTATIONS

The equivalents of Hermitian operations for Lie alge-
bras are star and grade star operations for Lie superalge-
bras." For a Lie superalgebra L = Lz + Lg, the operation t
(resp.}) which maps L, into L, (@ =0,1), is a star (resp.
grade star), operation if

(@4 +bB) =a’A* + b"BY,

resp. (@ad +bB) =a'A* + b B?,
[4,B1'=[B',A4'], resp. [4,B1*=(—1)?[B}A4%],
(AN =4, resp. (A% =(— 1)°4, (6.1)

for all elements (resp. for all homogeneous elements) 4 and B
of L and for all complex numbers a,b. The notation * denotes
the complex conjugate, and a(resp. /) are the degrees of 4
and B.

Definition (6.1) implies that the restriction of a star or
grade star operation to the even part Lg is a Hermitian oper-
ation of the Lie algebra L. Therefore, we consider all possi-
ble Hermitian operations on the even part, and investigate
whether it is possible to extend them to a star or grade star
operation for the Lie superalgebra. The even part of D (2,1;a)
is su(2); + su(2), + su(2),, and we shall consider only those
Hermitian operations which map the elements of each su(2)
subalgebra into the same su(2) [i.e., su(2),—su(2),, etc.].
Since there are two distinct operations for an su(2) algebra,

denoted by
su(2):  sh=s, s o=s_,
. R (6.2)
su(L1): s§=sp ', =—s52,
we have eight different Hermitian operations for

su(2) 4 su(2) +su(2). We find the following result for
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D (2,1;a) = I' (0,0,,05): If and only if all o, are real (or if and
only if @ € R), each of the eight Hermitian operations for
D (2,1;a); can be extended in two possible ways (i.e.,e = 1 or
€= —1) to a star (S) or grade star (GS) operation for
D (2,1;a). In (6.3) we summarize for which cases there is a GS
or S operation, and we give their explicit form:

(1) su(2) + su(2) + su(2):GS
S(x) = Sos sii =5x; t(x) = lo, tx:t =tr;

”3 = Uy, uti =Ux; R iz,j,k = €(8ik )R —i—j,—k>
(2) su(1,1) + su(2) 4 su(2):S
S =80 8T, = =555 th=t, 1T, = —1;

ug = U, utt = —~Ug; R Ij,k =€(4jk)R—i,—j,—k;
(3),(4) su(2) + su(1,1) 4 su(2) and su(2) + su(2) + su(1,1):S,
and the explicit operations are the analog of (2);
(5) su(2) + su(1,1) + su(1,1):GS

1

S = So» sti =S:;:;t$=to’ t1i=—t:F;
u§ = g, “ti = —Ugx; R%,j,k =€20R _; _; _i;
(6),(7) su(1,1) +su((2) +su(l,1) and su{l,1}+ su(l,1)

+ su(2):GS, and the explicit expressions are the analog of
(3)
(8) su(1,1) + su(1,1) + su(1,1): S

58 = So

ul = ug,

- Lot — — .
sty = —so5 th=t, th, = —1;
utt = —u:F; RL’k =6R—i,—j,—k

wheree = + 1,and ij,ke { — ,i}. {6.3)

Let p be a representation of the Lie superalgebra L into
a graded representation space V' = V5 + ¥, with positive
definite nondegenerate Hermitian form (|) satisfying

(V5|Vi) = {0}, (6.4)
such that Vis a graded Hilbert space.'® Let pl(¥ ) be the grad-
ed vector space’ of linear mappings of ¥ into itself. For every

homogeneous element 4 of pl(V), the adjoint operator 4 *
(resp. grade adjoint operator 4 ¥} is defined by"*

(4 x]y) = (x|4y),
resp.{4 *x|p) = (— 1) (x|4y),
VeV, VYyeV, (6.5)

where a = degree (4 ). Then, the representation p: L—pl(¥V')
is a star (resp. grade star) representation if for all
AeL,la=0,1)

paT) =), resppld?)=(old)} (6.6)

We now investigate which of the representations, con-
sidered in Sec. V, are star or grade star representations. In all
cases, the representation space ¥ is spanned by the basis vec-
tors (4.3), which are the mutual eigenvectors of the set of
commuting operators W = {S?, 5o, T2, to, U% o, L }. It is
easy to verify that for the eight possibilities given in (6.3), all
operators in W are self-adjoint, i.e., they always satisfy
AY=A orA* = A (for A € W). This restricts the choice of
an inner product on ¥, and it is natural to define

VxyeV,

(s'\my;t '\ myu' ,mi A \s,mgt,mu,m, A )
=68, .86, .88, .80

wm,m,

(6.7)
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In our discussion of star and grade star representations, we
shall consider only the cases (1), (2), (5), and (8) of {6.3), since
the remaining possibilities are quite analogous due to the
symmetry of the three su(2) parts in I"(0,,0,,05). Further-
more, because of (2.10) and (2.2), we can restrict ourselves to
the D (2,1;a) algebras with a > 0 [in fact D (2,1;a)~D (2,1;
—1—a)=D(2,1; -1 - 1/a)).

A. Finite-dimensional grade star representations

Only the first choice in (6.3) corresponds to finite-di-
mensional representations of D (2,1;a). We investigate which
of the finite-dimensional representations are in fact grade
star representations. For this, we make use of the adjoint
operations of the shift operators. Making use of Ref. 12, we
obtain in case (1) of (6.3) (i, j, k = + 1)

(4 % }28 4 1)(2¢ + 1)(28 + 1)
= —e(8ijk)d ~Hh k(2B =2+ 1)2f— 2 + 1)
X (24 — 2k + 1).
This implies, since the 4 “* are odd operators, that
(st A |[A ¥4 —5 =0 =K s A )

= 3 — gk )~ 1

% (25 —2i4+ 1)2t — 27+ 1)2u — 2k + 1)
(25 + 1)(2t + 1)(2u + 1)
X[(s =it —ju —A'|A =75 ¥ s, )3,
(6.9)
where ofs,,u) is the degree of the state |s,,u;4 ). Relation
(6.9) provides us with the positivity and negativity conditions
for the matrix elements of the shift operator products. We
discuss the case € = 1 and o{p,q,7) = 0—the remaining possi-
bilities give rise to analogous results. First we consider the
general case in which the D (2,1;a) irrep reduces into 16 sub-

algebra representations whose (s,z,u) values are given by
(4.2). From (4.12) and (6.9) we obtain

[p—bag+dr—144- 12172172\ 0 ) |2
= [(2p + 1/p1(2g + 1)2r + 1)

(6.8)

X[op — o +aslr + 1)1, (6.10)
[P~ Lg+ Lrjd ~ 41212y _4g i yr i B2
(2 2r + 20
S, C ) M ) ety
-1 2y
X[ow — g+ oslr + 1], (6.11)

Obviously, the positivity conditions in (6.10) and (6.11) can-
not be satisfied simultaneously, and hence the representation
is not a grade star representation. In fact, a detailed analysis
of all possibilities, making use of similar arguments to (6.10)
and (6.11), shows that the only grade star representations are
(1) the trivial representation (0;0;0); and (2) for @ € N, the
irreps (};(@ — 1)/2;0), with even states |}, + 4@ — 1)/
2,m,;0,0) and odd states |0,0;a/2,m,;}, + 1). The conclu-
sion is the same as for 0sp(3,2) (see Ref. 8): only a few finite-
dimensional irreps of D (2,1;) are grade star representations.

B. Infinite-dimensional star representations in the case
su(1,1) + su(2) + su(2)

We prefer to work with the O “** operators instead of
the 4 “* because of the complicated internal structure of
infinite-dimensional su(2) irreps. The star conditions [6.3(2)]
imply
(0*)1(28 + 1)27 + 1)22 + 1)

= — ¢(4jk )0 —H—F -k

X2 =2+ )2 -2+ )2 —2k+1), (6.12)
from which we obtain
(25 + 1)2t + 1)2u + 1)

X (s, A |00 "I =Fstud )

= 3'(— e)idjk )25 — 20 + 1)2t — % + 1)

<

X(2u — 2k + V)| (s — it — ju — kK A’|

X0 ~F =K s bud YA (6.13)

We consider a general (p;g;r) irrep, and obtain from (6.13)
and (4.12) {in the case e = 1)

'(P — %, mp —_ %;q + i’mq + i;r+ i’mr + %lo - l/2,1/2,l/2lp, p;q9mq;r!mr) '2

=2[(2p + 1P/(2p))(2q + 1)2r + 1o — 029 — o37)p + m, g + my + 1)ir + m, + 1),

l(P - i’mp - %;q + iqu + %;r - %9”1’ - i'o — 1212 — Vzlp»mp ;q’mq ;r,m,) |2

=2[(2p + 1//(2p)1(2g + W)2r + oy p — 02 + o5(r + V](p + m,)g + my + 1)r + m,),

[p— 4 m, — kg —hmy —§r+4m, +410 = V>~V 2 pm qm irm,)|?

=2[(2p + 1/(2p))2g + 1)2r + l)[0wp + 05lg + 1) — o371 (p + m, )lg + m,)r + m, + 1),

,<p - %’mp - %)q - é’mq - %;r - %’mr - %IO BhGi l/zlp’mq ;q’mq ;r,m,) |2

=2[(2p + 1/’/(2p)1(2 + 1)2r + 1)[op + o2lg + 1) + o3(r + 1)1(p + m,)lg + m,)(r + m,).

Let us first suppose that op — 0,9 — 0,r>0, or in the
D (2,1;a)notation: (1 + a)p + g + ar>0.Then(6.14)implies
that p(p + m,)>0.Making use of this last inequality in
(6.15)—6.17) gives, together with the assumption, the four
conditions
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(6.14)
(6.15)
{6.16)
(6.17)
—
{(14+ap+qg+ar>0,
1+ +qg—alr+1)>0,
l+ap+g—alr+1) (6.18)
(1+alp—(g+1)+ar>0,
(l1+ap—(q+1)—ealr+ 1}>0.
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Since g,» € }N and & > 0, this means that p must be a positive
real number, so that p(p + m, ) > Oimplies that the m,, values
are bounded from below. This shows that we have a positive
discrete su(1,1) representation D *, labeled by p, and with
minimum m, value m, = p + 1 [for a brief review of infi-
nite-dimensional unitary representations of su(1,1), see Refs.
8 or 18). All the other shift operator matrix elements are
analyzed in a similar way, and we find the following result.
The representation {p;q;r), with p >0 and ¢,r € 1N, and
such that the four conditions (6.18) are satisfied, is an infi-
nite-dimensional star representation of D (2,1;a) for which
the basis states are given by |s,m ; t,m,;u,m, ;A ) with
(s,tu)e 742, m, =s+ 1,s+2,..,m, = —t,—t+ 1,.,
+t,and m, = —u,—u+1,..., + u. In other words, the
representation decomposes into su(l,1) + su(2) + su(2) ir-
reps which consist of the direct product of a positive discrete
D * with two finite-dimensional su(2) representations. There
is a second general solution, consisting of representations
(p:q;r) with p <0, g,relN, satisfying

(1+ap+qg+ar<0,
(1+ap+g—alr+1)<0,

(1+ap—(g+1)+ar<O,
(1+ap—(g+1)—alr+1)<0.

Such irreps are again star representations of D (2,1;a), and
the (s,t,u) representations in which they decompose consist
of the direct product of a D * (with minimum m value
m, = — s) with two finite-dimensional su(2) irreps labeled
by t and u. Also the truncated or the atypical representations
are star representations, if they satisfy (6.18) or (6.19). In
particular we consider the doublet representations ( — 1/
2(1 + a);4;0). Because in this case the two corresponding s
values are between — 1 and 0, we find two solutions for the
star conditions: (1) states | — 1/2(1 + a), m,;}, + 4;0,0) with
m, = 1/2(1 + a), connected to | — (@ + 2)/2(1 + a), m_;
0,0;4, + 1) with m; = (a + 2)/2(1 + a); (2) states | — 1/
2(1 + a),m,; §, + 40,0) withm, = (2a + 1)/2(1 + a), con-
nected to | — (@ + 2)/2(1 + @), m};0,0;}, + 1) withm, = a/
2(1 + a). The explicit form for the representatives of the

(6.19)

. D(2,1;a) elements in the doublet representations will be giv-

en in Sec. VII.

Fore = — 1, we find similar results: all the representa-
tions are again star representations, but the su(1,1) part now
consists of a negative discrete series D ~ instead of D *.

C. Grade star conditions in the case su(2) + su(1,1) + su(1,1)
The grade star operatiop [6.3(5)] leads to the following property for the shift operators:

(O k)28 + 1)(27 + 1)28 + 1) = — €(20)0 ~» 5~ %28 — 2i + 1)2t — 2 + 1)2&t — 2k + 1),

from which we deduce
(25 + 1)(2f + 1)2u + V){s,t,u;4 |O*0 —* ~+ =K |st,u;4 )

= 3(— el2il - 17425 — 2i + 1)(2f — 2 + 1)2u — 2k + 1)|{s — it — jyu ~ kA '|0 ~>—F~*|s,ud ) 2,

where os,t,u) is the degree of the state |s,z,u;4 ).

(6.20)

(6.21)

Let us consider a general irrep (p;q;r), with p € iN and ¢, € R*. From (4.12) and (6.21) we determine the following

expressions:

(o —4m, — kg +14m, +§r+4m, +4(0 ~ V22 pm, iqm irm, ) |?

=2(— 1)""*"€[(2p + 1°/(2p)12g + 1)2r + W)o1 P — 029 — 031p + m,)(g + my + 1)(r +m, + 1),

(6.22)

| —4m, — kg +4m, +4r—4m, —4|0 a1 =12 P iq.mgsrim, ) 2

= —2(— 1)"*%[(2p + 1/(2p)1(2g + 1)2r + V]ow — 0,9 + o3(r + D] + m,)ig + m, + 1)(r + m,),

(6.23)

o — Lm, — g+ 1m, + Lr,m, |0 ~ V212 =2 p —4m, —Lg 4+ 4m, + ir + m, + |
= —2(— 1~ V2a+V2r+ Ve[ (2p)2/(2p — 1)](2¢ + 1)[(2r + 2)*/(2r + 1)1 [0p — 0,9 + 05(r + 1)]

X +m, —g+m, +2)r+m, +1).

We first investigate the case € = + 1 and o{p,g,7) = 0. The
latter condition implies ofp — ,g + 4,7 + }) = 1. Suppose
that o\p — 0,9 — 037> 0. Then (6.22) leads to

g+ 1)2r+ 1)fg+m, + 1)r + m, + 1)>0.  (6.25)
Making use of this result in {6.23) gives
o, p— 0,9 + o5(r + 1) <0. (6.26)

But under these conditions the right-hand side of (6.24) turns
out to be negative, which leads to a contradiction. Hence, the
irrep under consideration is not a grade star representation.
We have the same conclusion for o,p — 0, — o5 <0, or for
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(6.24)

r
the other possible choices for € and o{p,g,7). A detailed analy-
sis showed also that the truncated and the atypical represen-
tations violate the positivity conditions. As a consequence,
none of the infinite-dimensional D (2,1;a) irreps in an
su(2) + su(1,1) + su(1,1) basis are grade star representations.

D. Star conditions in the case su(1,1) + su(1,1) + su(1,1)
The star conditions [6.3(8)] imply

(O*)7(25 + 1)27 + 1)(22 + 1)
= —€0 ~tTh KRB 2+ )21 -2+ 1)

J. Van der Jeugt 921



X (28 — 2k + 1),
(25 + 1)2¢ + 1)2u + 1)
XAt uA 0940 ~ 2=~ ¥ s tud )

(6.27)

= S(—e2s— 2 + 12 — %+ 1)2u — 2k + 1)
2

X | (s — it —jju — A0 Kl ud )
(6.28)

Just as for the previous cases, we make use of this and (4.12)
in order to obtain the positivity conditions for the shift oper-
ator matrix elements. These conditions give rise to the fol-
lowing relations for p, ¢, and 7:

o p— 0 —0or>0, {6.29a)
o p— 0,9 4 os3{r + 1) <0, (6.29b)
o0+ 0odg+ 1) — oy <0, {6.29¢)
o+ oolg + 1} + as(r + 1)>0. (6.29d)

But (6.29a) and (6.29d) imply o{2p — 1} >0, whereas {6.29b)
and (6.29¢) imply o,(2p — 1) <0. This shows that there is no
admissable solution for p,q, and » which satisfies (6.29).
Hence, the infinite-dimensional D{(2,1;x) irreps in an
su(1,1} + su{1,1) + su(1,1) basis are not star representations.

VIl. THE DOUBLET REPRESENTATION FOR D(2,1;2)

The doublet representation, considered in Sec. VI B, is
a star representation of D (2,1;a). Because of its simple struc-
ture and the connection with the metaplectic representa-
tion,”® we study this infinite-dimensional representation in
detail.

We denote the states of the doublet representation
(—172{1 + a)-;-O ) by

2na+2n+1 1 1 >
in— ; 9 CVCII,
P ’ I+a 2(1 + a) +7700) feven)
(7.1)
v = “*2’,2”“*2”*“”;0,0;1,11) (0dd),
Al +a) A +a) > %3
(7.2)

where n = 0,1,2,...,0. The actions of the generators upon
the basis states are obtained by means of the method ex-
plained in Sec. V. This gives us the following explicit form of
the doublet representation for D(2,1;a} [in {7.4), only the
nonvanishing actions are given}:

2na+2n+1

5 g:" = a,n?
"o Al+a) %
2na+2n+a+2
o ¥ = Z
oV 2{1 +a) Ya
+ - (n+1)(an+n+1)]1/z .
S+ Pan [ (1+CZ) Pan+1r
a— 172
S_qp‘fn= "‘[l(g-%l—-in—a)——a)«] eE 1 (1.3)
+ _ (n+1)(an+n+a+2)]vz .
S+ ¢'Cl,n [ (1+a) ¢an+19
Sk = _[M]"’,ﬁi )
p— a,n (1+a) a,n —
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t0¢¢3,:n = i£¢:fn’ ty @j,:n =¢ai,n’
u0¢:fn = :t%wc:cl.:»’ u;j: ![}a:',:n zwci:n’

LG =u, 95 =0 (=01}

Ripi1px®an= t2lan+n+ 1y WJ‘L,
R_\ps1nk®an= Fl2na+ Ny ryE ., (14)
Ry 102 ¢:fn = + [2(n + e + 1)]”2¢Z},n+l’

R_ s Van= F2Ana+n+ 1)]'2 2,

where the indices ( ) or (k) denote the sign of j and &, respec-
tively. It is easy to verify the (anti-) commutation relations
{2.3}2.5) and the star condition [6.3(2)].

The form of the doublet representation suggests that
this irrep may be realized in terms of functions of one com-
plex variable with four components, i.e., functions f; C—C*
with components f; (i=1,2,3,4. We denote f by
Uiofsfa)'s where t is the transpose. We found, however,
that such a realization is possible only for a = 1, that is, for
the case D (2,1;1}=0sp{4,2). The normalized basis states (7.1)
and (7.2) are then realized as follows:

@ {:—n - ifm/z[(zn)!}—llzzh [1 000]‘,
@ 1-’—’1 - es'mafz[(zn)g]—-ll‘zzzn{o 1 00];,
¢l+n — iﬁ2n+l)/4{(2n + 1)!]-13'2
xz"*+'[0010], (7.5)
¢1"'n — eiﬂ(2n+ l)/4[(2n + 1)|] —1/2
Xz *+10001]"

These expressions are elements of #°(C,C*), the space of ho-
lomorphic functions £C—C*, which satisfy

f (E WZ}!Z) expl — |24 (2) < o,

where A is the Lebesgue measure on C. The inner product
{6.7) for the representation space can be expressed as

(flgy =+ ff(z)*g(z)exp (= lz%dA 2

{7.6)

-1 (zf(z)* )
Xexp ( — |z]*)dA (z) (7.7
for f,g € 7(C,CY).

The basis elements of D (2,1;1) are then operators acting
in the space #°(C,C*). We write their 4 X4-matrix expres-
sions in terms of 2 2-block matrices, making use of the
Pauli'” matrices o, = (o, + i0,),05 and of the shorthand
notation

We find
1 d 1 i i d?
Sp=—Z—4— §,=—2°, S_=—=—,
it T 2 d
- 1 [03 0 ; _[oi 0]
°“ 210 o "* lo ol
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; 0 o
R, /2172 = \/iemmz [ N ’
' o, O
i Y —€n
R _ —_— 2 enr/4z [
172,172, — 172 ers o I
. 0 —e
— /4 2
Rijp _vpin= —v2em Z[ o I (7.8)
€n
) 0 o
— /4 -
Ry ingm1n= —N2€772 [a‘_ ol
.d |0 o_
R _ip 12 —12= —V2 et — s
’ ’ dz Lo _ 0
e G 0 €22
R _ _ — \/5 e3nr/4 el
172, ~ 1/2,172 - eu ol
d €n
R_\pin—1n= — 24 ,
’ —e, 0

e 0 c
— [3 g3t [ +].
R_panan Ve dz Lo+ 0

Similar realizations have been found for osp(1,2) (see
Ref. 7) and osp(3,2) (see Ref. 8). For osp(1,2), the so-called
metaplectic representation could be realized in terms of ele-
ments of 7#7(C,C), whereas for osp(3,2), its “metaplectic” rep-
resentation was given in terms of 5#°(C,C?). It is remarkable
that only for a = 1, i.e., for D(2,1;1) = osp(4,2), can the
doublet representation be realized in this way. The sp(2;R )
labels for the doublet representation of osp(4,2) in the reduc-
tion to su(1,1) + su(2j + su(2)~sp(2;R ) + so(4) are — } and

— 3 [see (7.1) and (7.2)], just as was the case for osp(1,2) and
osp(3,2).

VIii. CONCLUSIONS

Finite- and infinite-dimensional irreducible representa-
tions of the exceptional Lie superalgebras D (2,1;a) have been
classified. The star and grade star conditions for the algebra
and for the representations have been investigated in detail.
For the finite-dimensional case, only grade star representa-

tions are possible. It appears that only a few ﬁnite-dimen-‘

(1) (1,00
A ij, — 1/2A i, l/2u + A i,j,l/ZA i, — 1/2(ﬁ + 1) — 0;
(2) (1,00

A i,1/2,1/2A h—1/2, — 1/2(; 4 ﬁ + 1) +A i1/2, — l/2A i, — 1/2,1/2(2; + l)ﬁ +A i, — 1/2,1/2A i1/2, — 1/2; [21‘} + 1) — 0,

(3) (0,0,0)

A 1/2,1/2,1/2A ~1/2,—-1/2,— 172 + A~ 1/2, — 1/2, — 1/2A 172,172,172

sional irreps turn out to be grade star representations, a re-
sult similar to that for B (1,1) (see Refs. 8 and 19) and B (0,2)
(see Ref. 19). Among the infinite-dimensional irreps we find
alarge class of star representations. They are in fact D (2,1;a)
irreps in an sp(2;R ) + so(4) basis. One of them, the doublet
representation, has been constructed explicitly in Sec. VIL

For a finite-dimensional typical representation, it is
easy to verify from (4.2) that the dimension is given by

dim{p;q;r) = 16(2p — 1)(2g + 1){2r + 1). (8.1)
This expression was also given by Kac,® and shows that the
dimensions of the typical representations are the same for all
D (2,1;a). Since we have given the reduction rule also for all
atypical and truncated representations, it is easy to deter-
mine their dimensions. In particular, we have shown that the
dimensions of some irreps of D (2,1;a) are dependent on a.
For instance, the two lowest-dimensional nontrivial irreps of
D{(2,1;1) have dimensions 6 and 17, whereas for D (2,1;2) they
have dimensions 10 and 17. This property shows more than
anything else that two D (2,1;) algebras with different  val-
ues are not equivalent.
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APPENDIX: SHIFT OPERATOR PRODUCTS

A shift operator product 4 7*'4 % ig called of type
(" +1i,j+j, k' + k). We find the simplest relations when
[i+il =7 +j=k'+k|=1

AT q =0, (Al)
Because of the symmetry of the three su(2} parts in
I'(0,,05,03), and since there exist several transformation
rules for shift operator product relations,'?!>!¢ it is enough
to give the relations of type (1,1,0), (1,0,0), and (0,0,0):

(A2)

(A3)

L 42 [S*+ T2+ U =St —$t—th —§—1—0—1)
+2{0, 84+ 0,T* + 0,U* + 20,53t — 5t — 3t — 3+ t + B))

+20,T2 380 —§t —th — 1+ 5+ @)+ 20Ut —th — S — 4+ 5+ 1)} =0;
— L 2L [SP+ T2+ U3t +th — S0 + 1)

A 172, — 1/2,1/2A —-1/2,172, ~ 1/2 + A~ 1/2,1/2, — l/ZA 172, - 1/2,1/2

(Ad)

+2{0,8% + 0,T* + 05U + 20,8 — 3ta + 8t 30~ 28 — 1 — 1)

420, TX 350+ 5+t + B+ 20+ 1+ )+ 20U~ 3t + th —56— 28 —1— 1)} =0;
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(A5)
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A - 172,172, — l/ZA 172, — l/2,l/2(2ﬁ + l)(§ — ;) —A —1/2,—-1/2, — l/ZA 1/2.1/2,1/2(2:‘: + 1)(& + ; + 1) +A —1/2, — 1/2.1/2A /2,172, — 172
X2+ 1) —8)—E+ )2+ )28+ V) — 3 L+ 208>+ T> + U + fit — 5t — 3 — 25 — 1)
+2[08*+0,T* +0,U* + 20,56 — 1)fat — 38t — 5t — 28 — 1) — 20,52

+ 20, Tth — 3t — §t) + 205Ut — 32 — 51)]} = 0.
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The Harnad-Shnider—Vinet study of symmetry properties on gauge fields in terms of invariant
connections on principal fiber bundles is reviewed in the simple U(1)-gauge theory. It is extended
to the case of invariant electromagnetic fields admitting nontrivial extensions of their symmetry

groups. Some specific examples are discussed.

I. INTRODUCTION

During the last decade, differential geometry' became a
very useful language in theoretical physics and more particu-
larly in gauge theories. Classical electromagnetism and
spinor electrodynamics [a theory subtended by the gauge
group U(1)] have been formulated in terms of one- and two-
forms, fiber bundles, associated connections, etc. A nice re-
port on these tools has been given by Drechsler and Mayer.”

More recently, symmetries in arbitrary gauge theories
have been developed using basic notions of differential ge-
ometry by Bergmann—Flaherty> and Forgacs-Manton.*
Some interesting contributions have also been obtained, on
the one hand, on symmetries and conservation laws in gauge
theories by Jackiw—Manton® and, on the other hand, on in-
variance conditions for gauge fields under group actions by
Harnad, Shnider, and Vinet.®” All these studies mix space-
time and gauge symmetries or transformations. They are de-
veloped in principle for arbitrary gauge groups and have to
give, in particular, all the well-known results when the gauge
group U(1) is under consideration, i.e., when we are dealing
with classical interactions through electromagnetic fields.
So, a simple question arises and is the starting point of the
contents of this paper: Can we recover all the well-known
results of the U(1}-gauge theory from the above geometrical
approaches dealing with arbitrary gauge groups? If, happily,
the answer is essentially positive, we want to emphasize
some nontrivial points dealing with invariant electromag-
netic fields® or invariant potentials,® through compensating
gauges, '° group extensions,'! and associated factor sets'? (or
exponents).

In the U(l)-gauge theory, the electromagnetic poten-
tials are the gauge fields and their symmetries are deter-
mined through the coupling of space-time and gauge trans-
formations. For example, Janner-Janssen!® have studied
compensating gauge transformations in connection with an
extension by R of the symmetry group associated with a giv-
en electromagnetic field. From gauge theories based on arbi-
trary gauge groups as discussed by Forgacs—Manton,? there
are specific assumptions on the compensating gauges which
can only be satisfied in the U(1)-case if the symmetry group
of the electromagnetic field admits no nontrivial extensions
by R. This is not the more general context as we shall see in
the following.

Moreover, let us point out the Harnad-Shnider-Vinet
approach’ dealing with the geometrical interpretation of
symmetry properties on gauge fields in terms of invariant
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connections on principal fiber bundles. Here also, the inter-
pretation is realized within the Forgacs—Manton hypotheses
so that, in the U(1) context, it is not complete when the sym-
metry groups admit nontrivial extensions by R.

Let us finally notice that analogous difficulties have al-
ready been pointed out and partially solved by Henneaux'?
and Duval-Horvathy.'* Here we plan to give a more general
answer based on the Harnad-Shnider—Vinet developments.’

In Sec. II, we just recall some elements issued by the
works of Janner-Janssen'® and Forgacs-Manton?, restrict-
ed to the U(1)-gauge theory in order to pick out symmetry
properties on potentials associated with a given invariant
electromagnetic field. Section III is devoted to the Harnad-
Shnider—Vinet approach,” using fiber bundle techniques
with U(1) as the structure group but with the extension by R
of the symmetry group (of an electromagnetic ficld) as the
group of automorphisms on the bundles. In this way, we
classify the fiber bundles and the invariant connection forms
leading to the interpretation of invariance conditions on po-
tentials and fields. Section IV contains some examples and
comments in order to apply our developments. The proce-
dure is summarized and applied to two specific examples,
the first one for constant and uniform electromagnetic fields
(IV A) and the second one for arbitrary electromagnetic
fields (IV B). Some comments are added in connection with
physical approaches leading to complete sets of constants of
motion associated with charged particles moving in external
electromagnetic fields.'® Such a study and all the results lead
to a deeper insight into the geometrical aspects of U(1)-gauge
field symmetries.

Il. INVARIANT ELECTROMAGNETIC FIELDS AND
POTENTIALS

Let :G X M—M be a differentiable left action of a con-
nected Lie group G on a smooth manifold M. This action
induces a homomorphism £—.X ¢ from the Lie algebra G of G
into that of vector fields on M. Since G is connected, the G
invariance is equivalent to infinitesimal invariance.

Firstly, let us consider a G-invariant closed two-form F
on M with valuesin R, i.e.,

L,.F=0, VYeG, 2.1)
where L denotes the Lie derivative. In addition, if U is an
arbitrary contractible open subset of M, we have F |, = d4
for some one-form 4 on U. From Eq. (2.1), we deduce that

dL,.A =0 and then we may choose a linear mapping
W:6—C_ (U,R) such that
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L,A=dW,, VéeG. (2.2)
As easily seen, the differential of
65 )=LyeWy —Lye Wy — Wigy (2.3)

vanishes on U so that ¢ is in fact a skew-symmetric mapping
from G X G into R. It is actually a two-cocycle of G for the
trivial representation on R (see Ref. 16). Indeed, we have

o([66°1E") +ellE 5" 1.6) +cll£7£1.67)=0. (2.4)

Of course, the above 4 and W are not unique and other
choices would modify ¢, at most, by adding a coboundary.
Thus, what we really get in this way is a cohomology class
¢(F) = [c]eH ¥G,R,0) of the second cohomology space of the
trivial representation of G on R, which, clearly, does not
depend on U and hence is globally attached to F.

Ifc¢(F) = 0, then cis the coboundary of some linear map-
ping ¢:G—R and W' = W + ¢’ satisfies the equation

LWi —L o Wi—Wig, =0. (2.5)

This equation has been completely solved'’ when M is an
orbit G /G, of G. In this case, the de Rahm cohomology class
of F is a characteristic class of the principal G, bundle
G (M,G,).

For later use, we need another form of Egs. (2.2) and
(2.3). Set ¢:6—C _ (U,R) defined by

Y = W, —ilX*)4, VEeG, (2.6)

where i denotes the interior product. Then, as easily seen,
Eqgs. (2.2) and (2.3) read, respectively,

X €)F = dif, (2.7)

and

FXSXE)=teeq —clbf) (2.8)

Secondly, we turn to apply the previous discussion to
invariant electromagnetic potentials and fields. The mani-
fold M is now some open region of the Minkowski space-
time R* and F represents an electromagnetic field in M. We
denote by G the group of geometrical symmetries of F. In
this context, A represents an electromagnetic potential asso-
ciated with F, and the mapping W, as a function from G X U
into R, is the usual compensating gauge transformation.'°
Then, the G invariance produces some class ¢(¥) and both
¢(F) and W are ruled by Eq. (2.3).

However, if we apply the Forgacs-Manton consider-
ations* to the case of the U(1)-gauge theory, we recover Eq.
(2.5) rather than Eq. (2.3). In fact, their considerations are
valid under some specific assumptions on the compensating
gauge transformations which imply the vanishing of our
class ¢(F). In addition, Eq. (2.5) is a necessary condition for
the existence’ of an interpretation of the symmetry proper-
ties for the field F and its potentials in terms of invariant
connection one-forms on a U(1)-principal bundle.

Our main goal in this paper is to furnish a method al-
lowing us to work out the general case for which c(F)#0.
Roughly speaking, it consists in killing ¢(F ) by enlarging the
symmetry group G of F, thus reducing the problem to the
previous one. In fact, H *(G,R,0) classifies the central exten-
sions of G by R up to equivalence,'*-'® and the new symmetry
group is essentially an extension of G associated with the
nontrivial extension of G corresponding to ¢(F). This kind of
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approach has been initiated in some particular cases (see, for
example, the works of Henneaux'? and Duval-Horvathy*).

Ili. PRINCIPAL BUNDLES AND INVARIANT
POTENTIALS

As known,” the field F and the potentials 4 are present-
ed in terms of a connection one-form o on a principal bundle
P over M with structure group U(1), the gauge group of elec-
trodynamics. One has F = if2, where £2 is the curvature form
viewed as a two-form on M [note that U(1) is abelian with the
algebra /R]; if 7:U—Pis a section, then 4 = ir*w is a poten-
tial for F over U.

Fora G-invariant F, the problem is to lift on P the action
of G on M in such a way that w becomes a G-invariant form,
reflecting thus the symmetries of F at the level of its poten-
tials. This problem has been solved’ when ¢(F) = 0, and then
when G admits no nontrivial extension by R. U(1) bundles
over M admitting a lift of the action of G on M have been
classified by Harnad, Shnider, and Vinet.” In the transitive
case, i.e., when M is a homogeneous space G /G, these bun-
dles are the U(1) bundles G*(M,U(1)) associated with the
principal G, bundle G (M,G,) and with the homomorphisms
A:Gy—U(1). On the other hand, the G-invariant connection
one-forms on the bundle G * (M, U(1)) are classified using the
well-known Wang theorem.!

We now turn to the study of a G-invariant F, for which
¢(F)#0. As quoted at the end of Sec. II, there is no direct
interpretation of F in terms of a G-invariant connection on
some U(1) bundle over M.

Let G denote the central extension of G by R corre-
sponding toc(F). Asaset, G is the product G X R whileits Lie
algebra structure is given by

(6,6 =([£5"].cl6:57). , (3.1)

[From now on, we will denote by £ = (£,7) a typical
element of G.] If we denote by G the simply connected Lie
group with the Lie algebra G, there is a unique homomor-
phism ¢:G—G whose differential at e coincides with the pro-
jection G—G onto the first factor. Consequently, G operates
on M through the action of G by

Fi=toa (62)

In particular, we have X ® = X %, VE = (£,77)€G. This de-
finition (3.2) thus implies that Fis G invariant.

Now, if W; = W, + 7, then W is a compensating gauge
for 4, i.e.,

LA =dWs, (3.3)
and it satisfies Eq. (2.5). It follows that the class c(F) vanishes
and hence that we may apply the results of Harnad-
Shnider-Vinet’ and Wang,' provided we replace G by its
extension G associated with c(F).

Let us finally notice that, in such a context, the Wang
theorem becomes the following. There is a one-to-one corre-
spondence between the set of G-invariant connections on
G*, where A:G,—U(1) is a homomorphism, and the set of
linear mappings A:G—iR such that

Alg, =2+, Alg,e =0 (3.4)
Using the definition of A in terms of @, we also have
J. Beckers and V. Hussin 0926



AE)=A(EmM =iW(Ex)—AXE)+7)  (3.53)
or

AE)=i(Wylx)) — 4 (XE). (3.5b)
Equations (3.5) may then be rewritten in the form

A(Em) = {Y (Ex0) + 1) (3.6)

showing clearly the connection between A and ¥ defined by
Eq. (2.6). Let us end this section by noticing that, using the
bracket (3.1), Eq. (2.8) becomes

A([EE') = —iF(XE,XE).

IV. EXAMPLES AND COMMENTS

Through some specific examples, let us illustrate the
geometrical interpretation of the preceding symmetry prop-
erties. Let us at once mention the example studied by Le-
comte!” of an induction produced by a magnetic monopole.
The fiber bundle interpretation of the associated symmetries
is realized with the quantization condition of the magnetic
charge. Such an example does work with a symmetry group
admitting only trivial extensions by R, and the Harnad-
Shnider—Vinet method can then be directly applied.

Here we are more particulary interested in examples
where the symmetry groups of electromagnetic fields admit
nontrivial extensions by R. Then, let us distinguish a specific
example in the case of constant and uniform fields® (Sec.
IV A) and another one in the case of arbitrary fields (Sec.
IV B), i.e., a magnetic induction produced by an unlimited
line wire carrying steady currents.

Let us summarize the procedure leading to the expected
interpretation in both cases.

For a given field F and an associated potential 4, we
determine their symmetry properties by using the elements
of Sec. II. These results permit us to characterize the algebra
G, i.e., an extension by R of the algebra G . associated with
the symmetries of the field F. '

To the algebra G, there corresponds a simply connect-
ed Lie group denoted G- and we search for the stabilizer G,
in G- of a given point in M and for the corresponding algebra
G,

We then determine the homomorphisms A.:G,—iR
and the applications A:G ,—iR satisfying the relations (3.4),
(3.5), and (3.7).

Finally, we get the homomorphisms 1:G,—U(1) lead-
ing to the construction of the bundles G* (M, U(1)).

(3.7)

A. Constant and uniform electromagnetic flelds

We are working on M =R* with the Minkowski metric.
Let us recall that, from the Bacry—-Combe-Richard results,®
there essentially exist two nonequivalent constant and uni-
form fields, the parallel (F, ) and orthogonal (F) ) fields. Here
let us only discuss the first one. The study of the F, field can
be realized in an analogous way and we leave this study as an
exercise for the interested reader.

The F| field is chosen as

F,=(E,B), E=(00,E), B=(0,0,B), (4.1)
which corresponds to the two-form
F, =EdzAdt+BdxAdy. 4.2)
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The symmetry group G of this field® is a subgroup of the
Poincaré group whose elements are associated with spatial
rotations around the z axis, pure Lorentz transformations
along the z axis, and space-time translations. The corre-
sponding six-dimensional Lie algebra is

G, = {J°.K>P*u=0,1,23)], 4.3)
with the only nonzero commutators
[J3,P']= — P2, [J3P?] =P
(4.4)
[K3,P° =P3 [K3P3 =PC

Now, if we choose the gauge-symmetrical potential 4
associated with | and corresponding to the one-form
A, =3E(zdt—tdz)+ 4B (x dy — y dx), 4.5)
the compensating gauge transformation W can easily be ob-
tained by using Eq. (2.2} and the following realization for the
generators of G,
J?=xD, —yD,, K?=1tD, +zD,,
(4.6)
PO:‘DN P'= -D,, P?= _Dy’ P*= —D,.
In fact, we have, up to an additive constant,
W x)=W(K3x)=0, W(P'°x)= —|Ez,
4.7)
W(P'x)= —iBy, W(P*’x)=}Bx, W(P3x)= —|Et
So that, from Eq. (2.3), the two-cocyle ¢ takes the only non-
zero values
¢(P°P®= —E, cP.P)= —B. (4.8)

Then, the extension (_;” is generated by the new genera-
tors #°, «°, , and I associated with those of G and R,
respectively. The only nonzero commutation relations char-
acterizing C" are

[/3’77'1] = _72; [/3’772] =1rly
] =7, ] =1, 4.9)
[#°7] =aEl, [#',7]=aBlI,

where a is an arbitrary real parameter.

With regard to the second step, if x, is the origin of
coordinates in M, the stabilizer of x, ( @o,“ )in (-;'" is the direct
product of G, by R, where G, is the homogeneous Lorentz
subgroup of G, . The algebra G, ; is then abelian and generat-
ed by 73, «° and I.

_ _In the third step, we search for the homomorphisms
A+:Go ) —iR, defined by

2 =iv, AP =ip, A.(I)=io, (4.10)
with v, p, 0, €, R. Now the applications A:(_}" —7R can be
determined. Indeed, Eq. (3.4) implies that

A ) =iv, AC)=ip, A()=io,
and

A7) =0, Vu. (4.12)
Moreover, having to satisfy Egs. (3.5) and (3.7), it is easy to

show that the parameters v and p in Egs. (4.10) and (4.11)
vanish and, in the commutators (4.9), we have the condition

(4.13)

(4.11)

a=1/0.
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Finally, the homomorphism A:G,,; —U(1) is defined by

AT+ =97 = ¢ xeR. (4.14)
Consequently, the symmetry properties of the F|, field and of
the associated potentials are interpreted in terms of those of
GII -1nvar1ant connection one-forms o on the principal fiber
bundle G*(M,U(1)). The extension G" is characterized by
the commutators (4.9) with the a value (4.13). Such connec-

tion one-forms are obtained from the application A :(_;” —iR,
defined by

and

A ()=

A{l)=io, o€R. (4.15)
Let us notice that, in fact, the bundle G*(M,U(1)) is trivial.

B. Nonconstant fields

Let us consider the example of a magnetic field B pro-
duced by an unlimited line wire carrying a steady current
strength j. This field can be written

B = (juo/277) — yx,0), (4.16)

with 7 = (x* + y*)'/2 when the z axis of the reference frame
coincides with the line wire. The field B is then defined for
the points of R? not located on the z axis so that we are
working on M = R\ {(0,0,2):zeR}. Such a field corresponds
to the two-form

F = (juy/2mr)(x dz Adx — y dy Ndz). (4.17)
In cylindrical coordinates (r,¢,2) it takes the i fm
F = (juy/2mr)dz Adr. (4.18)

It is then easy to show that this closed form is invariant
under a group G whose elements are associated with spatial
rotations around the z axis, translations along the z axis, and
dilatations in the xy plane. Indeed, if the generators of G are
realized by

J?*=xD,—yD,=D,, P*= —D,,

4.19)
D=xD, +yD, =rD,,
we have
L,F=0, VYXe{JP3D}. (4.20)
Now with a potential one-form
A ={juy/2m)Inrdz, (4.21)

we get the associated compensating gauge transformation
W x)=W([P>x)=0, W(Dx)= —(juy/2mpz.
4.22)
This leads through Eq. (2.3) to the cocycle ¢
cJ3P)=cJ3D)=0, c(PD)=(juy/2n), (4.23)
and we get the algebra G = { #°,7°, 9,1 }. It is character-
ized by the only nonzero commutator
[7,2 1 = aljuy/27),
where « is an arbitrary real parameter.
In this context, the stabilizer G, in G of some pgint inM
is necessarily reduced to the unity of G. The group G, is then
identified to R and the algebra Go is generated by 1.
Now the homomorphism 1. :G,—R is defined by
A.(I)=io, oeR, (4.25)
and the application A:G—iR satisfying Eqs. (3.4), (3.5),
and (3.7) is defined, for example, by

(4.24)
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AF)=A)=A(D) =
and (4.26)
A(l)=io,
if the point x,eM is chosen as x, = (1,0,0)._

In conclusion, the homomorphism 1:G—U(1) is de-
fined by

A(eT) = e, (4.27)
and the interpretation in terms of G-invariant connection

one-forms on G * (M, U(1)) is again obtained. The extension G
is characterized by the only nonzero commutator

(7D = (jue/270). (4.28)

Let us insist on the fact that the homomorphism A can be
extended to a smooth function §:G—U(1) defined by

keR,

B+ 7S+ am +pD) _ oo, (4.29)
such that
5(ego) = 5\ (o), V8€G, £:EGo

Then from Corollary 1 in the Harnad—Shnider-Vinet ap-
proach,’ the bundle G * is also trivial over M.

Let us end this section by noticing that these geometri-
cal developments have an immediate physical meaning in
connection with the determination of complete sets of con-
stants of motion associated with the description of charged
particles moving in external electromagnetic fields.!* In fact,
if we limit ourselves to the example of Sec. (IV A), it has been
shown that the generators of the extended algebra G, asso-
ciated with the electromagnetic field F, give rise to the con-
stants of motion deduced from the Hamiltonian or Lagran-
gian formalisms.'* These physical results and their present
geometrical interpretation lead to a deep understanding of
different aspects of the U(1)-gauge fields and more generally
of the U(1)-gauge theory.
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It is suggested to transform a class of nonlinear differential equations with a holomorphic type of
nonlinearity into linear integrodifferential equations. The method is presented in detail for first-
order ordinary differential equations. The transformed equation is studied and is found to have a
unique solution with an analytical representation. In a numerical test calculation rapid
convergence of an approximate solution of the linearized equation towards the reference solution
is found. The method can be applied to higher-order ordinary and partial differential equations.
The transformation can be generalized also to operator-valued differential equations.

1. INTRODUCTION

In recent years there has been growing interest in non-
linear phenomena in physics. These are mostly described by
nonlinear partial differential equations (PDE’s). We want to
mention as an example Liouville’s equation, which has sig-
nificant applications in electrostatics,’ hydrodynamics,>*
and cosmology.’ Recently it has also been studied in particle
physics in connection with monopole theories.® Another ex-
ample is the sine—~Gordon equation, which plays a role in
differential geometry,’ nonlinear optics,® plasma physics,’
superconductivity,'® and particle physics.!' Finally let us
mention the dynamical equations in quantum chromodyna-
mics (QCD).

The importance of these equations stresses the need for
solution methods. There are two principal methods to solve
nonlinear PDE’s in 1 + 1 (space + time) dimensions, name-
ly the Béacklund transformation and the inverse scattering
method."? The latter has been developed only in one space
dimension, while the Bicklund transformation is known for
certain PDE’s in higher dimensions." If one considers non-
linear PDE’s in field theory, one deals with operator-distri-
bution-valued equations. The difficulties to solve these equa-
tions are partly due to the appearance of functions of
operators.

A review of methods to solve nonlinear differential
equations (DE’s) and study stability and bifurcation is given
in Ref. 14. Here we want to propose a new approach to treat
nonlinear DE’s. We suggest to transform a nonlinear (quasi-
linear) DE into a linear integrodifferential equation, solve
this equation, and reconstruct the solution of the original
equation. When dealing with operator-value nonlinear
PDE’s it is considered as an advantage if one deals with a
linear equation instead. Because our approach ultimately
aims to treat those equations, it has been conceived to apply
in principle to operator-valued DE’s. In addition, for c-num-
ber-valued DE’s, a transformation to a linear equation may
be useful.

The present paper is considered as a first step towards
this goal. We present the method in some detail for first-
order nonlinear DE’s. We show that the solution of the
transformed linear equation is unique. It is straightforward
to reconstruct the solution of the original equation (Sec. II).
An analytical expression for the solution of the linearized
equation is given. Properties of the kernel of the linearized
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equation are studied (Sec. ITI). Linear functional equations
for the solution of the linearized equation are given in Sec.
IV. For one sample case the method has been tested numeri-
cally, and rapid convergence to the reference solution was
found (Sec. V). In Sec. VI, the method is generalized to high-
er-order nonlinear ordinary differential equations (ODE’s).
Section VII deals with nonlinear PDE’s. For a Laplace equa-
tion with a holomorphic nonlinearity (Liouville equation,
sine—Gordon equation) three kinds of assumptions are dis-
cussed which lead to a linearized equation.

li. FIRST-ORDER ORDINARY DIFFERENTIAL
EQUATION

Assume G;,,, Gpneq» Gor» G denote domains in the com-
plex plane, as shown in Fig. 1, with G = (G, UG 1,caUG o )°-
LetS denote an oriented closed Jordan curvein G, . For the
sake of technical simplicity we choose S to be a circle around
the origin. The origin is assumed to be interior to Gi,.

Let H () be a holomorphic function in G. Consider the
first-order differential equation

—j—f(x) = H(f(x))
X

where x runs over a finite real interval D = [x,x,] and f
satisfies the initial condition

Sfla) =/ (2.2)
We are interested in a unique, well-behaved solution of Egs.
(2.1) and (2.2).

It is known that there is a disk D,: |z — x| < in the
complex plane, where Eq. (2.1) has a unique holomorphic

(2.1)

FIG. 1. Schematic plot of the do-
mains G, Gy.q> Gou and the
contour curve S, as defined in
Sec. II.

Gmed Gout
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solution, obeying the initial condition Eq. (2.2). A proof is
given, e.g., in Ref. 15 (Theorems 2.2.1 and 2.3.1).
Moreover, we assume
SD)C Gy (2.3)

Thus, we can consider the extension of Eq. (2.1) into the
complex domain D,, which we denote by

2 @) =H(sf6), 2.4
2
with the initial value condition, where z; = x,,

fle) =/ (2.5)
We define for £ € G, 7 € G, (see Fig. 1)

2Em) =1/ —n) (2.6)
Hence, in particular, for = f(z), z € D,, we obtain

d H(f(z))

ey Y7 B 2.7

Y e 27)

For each e>0let S, = [£(1 + €)| € S} denote a “ra-
dially inflated” curve and G. the corresponding domain
bounded by the curve S,. For each £ €5, the function 1/
(€ (1 + €) — 7)? is holomorphic as a function of 7 in G,,.
Cauchy’s theorem can be applied and yields then for £ € S,
e>0,7€G,,

H) 1 (g
E(1+e—nP 2mils

H(E') 1
El+e—EV & —n
(2.8)
Due to Eq. (2.3) and G, having a positive distance from S by
assumption, we can choose in particular 7 = f(z) and per-
form the € limit on the left-hand side (lhs) of Eq. {2.8). Thus,
one obtains, using Eq. (2.7), for each £ € S, z€ D,

= tim L (g —E)
SOESe) = lm o | de

X2(§", f2).
The initial condition Eq. (2.5) now reads for each £ € §

2. f(z) =2 )=/ 1) (2.10)

We claim that Egs. (2.9) and (2.10) give a transforma-
tion of the original nonlinear differential equation with re-
spect to the variable z into a linear but singular integrodiffer-
ential equation with respect to the variables &, z. To make
this more explicit, we define D, to the class of functions
wlé,z), with £€G,,,, z€D,, which are holomorphic in

G, xD,, which satisfy for £ € S, ze D,

(2.9)

1 / H(') ,
= df' ——=2-~1 ¢
2 oiea) = im =L | dg Ayl
(2.11)

and possess the initial value

wl§zy) =1/ — f1), (2.12)
for all £ € S. We claim the following.

Proposition 1: Defining for£ € G, ,, ze D,

o'(6.2) =121(£, f12)) (2.13)
and requiring for £ € .S the initial condition

o'(6.2,) = 1/ — f1), (2.14)

we obtain an element w’ € D, , i.e., D is not empty.
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Proof: Here, 12 (£, f(2)) is holomorphic in G, X D, be-
cause f(z) is holomorphic in D,, £2 (£,7) is holomorphic in
G, X Gy, and f(D,)C G, by assumption. Equation (2.9)
shows that @', given by Eq. (2.13), is an explicit solution of
Eq. (2.11).

With Eq. (2.11) we have obtained the desired equation,
which obviously is a linear, singular integrodifferential equa-
tion. The following questions arise.

(a) Are there any other elements in D,, apart from that
given by Proposition 1?

(b} If the answer to (a) is no, how can one recover from
the solution w(£,z) of Egs. (2.11) and (2.12) the solution of our
original Eqs. (2.4) and (2.5)?

(c) What is the advantage of this transformation?

Part (a) is answered by Proposition 2.

Proposition 2: The element ' given by Proposition 1 is
the only element of D,.

The proof is given in Appendix A.

Concerning part (b), one immediately obtains forz € D,

f(z)——f # i f(z)

=5;Lds"§’ﬂ(§’,f(z))

— L [are otea) @.15)
2mi Js

To answer (c), we consider it as an advantage that linear
operator methods can be employed to obtain solutions. This
will be useful in particular for applications to nonlinear par-
tial differential equations. We want to mention here that Eq.
(2.11) formally looks like the Schrédinger equation

- T 5 ¥ =Hy,
where H denotes a time-independent Hamilton operator.

We introduce the operator A defined on #(G.,,,), the
space of holomorphic functions in G, , for all £ € S, by

(e)e) = lim —f de’ lf‘f’g)zg(s“)
(2.17)

By construction w(£,2) is with respect to the £ dependence an
element of #(G,,,) for eachze D,.

Thus Eq. {2.11) can be written as

(2.16)

4 0(°,2) = Aw(°,2). (2.18)
dz

lil. SERIES EXPANSION AND ANALYTICAL
EXPRESSION OF »

The solution of the Schrédinger equation (2.16) is

Yit) ="My, (3.1)

if H is time independent. Because the operator 4, defined by
Eq. (2.17), affects only the £ dependence, one might expect
from Eq. (2.18) by analogy to the Schrodinger equation that
o, the solution of Egs. (2.11) and (2.12), could be writtenin a
closed form

w(0,z) =" " a (0,2), (3.2)
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where

w,(§2) = 0l§,2)) = 1/(§ — fy). (3.3)
To show that this is actually true in some domain and to state
its precise meaning we have Proposition 3.

Proposition 3: The operator A defined by Eq. (2.17) for
ge A(G,,,) and restricted to (4g) (§) with £ € S can be ex-
tendeg\ to A such that

(Ag)(€) = (4g)(&), (3.4)
for all £€S. Here, (2g)(§ ) is defined for all £ € G, and
Ag € (G, ). This extension is unigue.

Moreover, the domain of 4 can be extendgd to
(G, X D,) (which we denote by the same symbol 4 and
one has

A (G XD,)C (G oy X D), (3.5)

4, i"—] =0. (3.6)
dz

The solution of Eqgs. (2.11) and (2.12) can be written for

EeG,,,zeD,

ole.2) = i{j(ﬁ o))z — 2,) (3.7

where @, is given by Eq. (3.3). The expansion converges uni-
formly in £,z in any double disk D, XD, in G, XD,.
Expression (3.2) is a formal way of writing Eq. (3.7). The
proof is given in Appendix B.

IV. FUNCTIONAL EQUATIONS

In this section we seek information on w, the solution of
Egs. (2.11) and (2.12). Here also the influence of w outside the
disk of convergence will play a role. We are going to con-
struct functionals and calculate the mapping of @ under
those functionals. One expects, however, that the set of these
functionals is not large enough to render complete informa-
tion on . We will introduce a Hilbert space 5% and trans-
form Eq. (2.11) to

(1—Blw=g, (4.1)

where w, g € 7, B:7%¥—77, such that B * exists. For every
h € 77 we will define a functional F,, via

(Fyl=((1—=B )| (4.2)
which yields
F,(w)=(h|g). (4.3)

In order to apply it to Eq. (2.11), we define a parametri-
zation of the curve S via

E=Rexplig), de[—m + 7] (4.4)
and

w(¢x) = 1/[R expli¢) — fix]], (4.5)

@4($x) = w(d.x,). (4.6)
Thus Eq. (2.11) can be written as an integral equation
wlpx) =08 + lim L f dx' 9(x —x)

»__expli¢ '\H (R expli¢ ) -
xf = (explig )(1 + €) — explig )* e x(c)t 7)

931 J. Math. Phys., Vol. 26, No. 5, May 1985

We consider the following Hilbert space:
K = Lz[ — mm] X [x1,%,)

= {h|£"d¢ xzdxlh(fp,x)lzexists],

x1

(4.8)

with its usual scalar product denoted by (:,-) and we intro-
duce

Ho={h|h e, h(px)is 2m periodic and infinitely many
times differentiable with respect to ¢ }. (4.9)

Here, 57, is a non-normalizable space, but it is dense in J#°.
We define for each € > 0 the operator B, on 57 by

(g
BN =5 f T =)

explig }H (R explig ')

, -
XJ; TR —r e
(4.10)
and B on 57, by
(Bho$x) = lim (B, o3 (@.11)

Then we have Proposition 4.

Proposition 4: For each €>0, B, and B both map 7%,
into 5. The Hilbert adjoint B_* is defined on 5% and maps
7 yinto 7. Thereis a “Hilbert adjoint*“ B * of B defined on
57, mapping into 5%,

The proof is given in Appendix C.

Now Eq. (4.7) can be written, using Eqgs. (4.6) and (4.11),
4.12)
which is of the form as Eg. (4.1). Obviously o and o, are
elements of 7#°,. We can define functionals and give the map-
ping of the solution @ under these functionals. Correspond-
ing to each h € J¥, we define F, by Eq. (4.2), which yields,
when applied to the solution,

(Fylo) = (hlwy),
which is of the form of Eq. (4.3).

@ =0, + Bo,

(4.13)

V. NUMERICAL SOLUTION OF THE LINEARIZED
EQUATION

In this section a numerical application of the lineariza-
tion method shall be described.
Let us consider the following example of Eq. (2.1):

9 fx)=f2x), xeR, (5.1)
dx
with the initial value condition
flO)= —i. (5.2)
The unique solution is given by
fx)=1/(i —x). (5.3)

For all real-valued arguments one finds the range of f to be
bounded;
| flx)|<1. (5.4)

In order to apply the linearization method it is suitable
to choose a contour path S to be a circle around the origin
with radius R = 2. We want to solve Eq. (2.11) approximate-
ly. Basically we are going to seek an approximate solution in
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the form of Eq. (3.2), but with a continuous £ dependence
replaced by a discrete & dependence, thus 4 being replaced
by a finite-dimensional matrix. The details of the construc-
tion are given in the following. For each function 4, holo-
morphic in G, the Cauchy integral

hiz) = fﬁh@ (5.5)

can be approx1mated by discretization of the path S in the
following way:

N k()
th—ZZIQ —y (5.6)
where
§j€S, Afj =§j+1 —§}., v =&, j=1L..,N
(5.7)
We define
AE.
@) i )
_ 145
== T , J=1,.,N. (5.8)

The following property of the @, turns out to be useful.
Each product ,(x)w;(x) can be expressed, at least approxi-
mately, by a linear combination of the @, (x) with coefficients
y independent of x, i.e.,

N
a),.(x)coj(x)zkz1 Vig@rl®), 6Lj=1,.,N. (5.9)
To establish this relation, first consider the following case.
@) i ie,&#E:
W (x)("j (x)
1 A¢; 1 A§;
" 2 § —flx) 2 & —fix)

[ AgAs 1 AgAL
2m(§] — &) 2mi &, —flx) 2w & —flx)
= a;;0,(x) + a,0,(x), (5.10)
where
1 4g
a; = i E — é‘, (5.11)

In this case Eq. (5.9) holds exactly Now consider the next
case.

(b)i=j.

The application of Egs. (5.5) and (5.6) to the unit func-
tion 4 (z) = 1 and putting z = f(x) gives

1==——

2 Js* F f(x)
N
2 % f()‘z“”’(x”

=t
and multiplying by o, and using Eq. (5.10) for i/ yields

N
ol fr) — 3 (

Thus the y coeflicients of Eq. (5.9) are defined by Egs. (5.11)
and (5.13).

5.12
217'1 j= 5-12)

— 6, ), 0;(x) + a;0;(x)). (5.13)
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Now we construct an approximate set of linear first-
order differential equations

d 1 4§, d

@ P T e @
2 o £
= AE, wi(x) f*{x). (5.14)
Equation (5.6) yields for 4 (z) = 2, with z = f(x),
2, g__ S 5! — 2 . 5 15
SAx)= Z 5’5 gy j;é';w,(x)- (5.15)
From Eqgs. (5. 14), (5.15), and (5.9) one implies
N
(0 (x)z—A_é-_ng }/lljw](x) z §k wk(x)
N
%Ik; Yiij gi 7’jk1w1(x)
_24”m (5.16)

where we have introduced the coefficient matrix 4, hence
Eq. (5.16) reads in matrix notation

d

— ox)=Ao(x). (5.17)
dx

Equation (5.17) has the general solution

olx)=e0?, (5.18)

with ©° being a constant vector which can be determined
from the initial value condition Eq. (5.2)

. S

o _a)j(X)lx=o"2m- &E—fX) o
04 (5.19)
277'1§,+’

Having found an approximate solution from Eqgs. (5.18} and
(5.19) it is easy to recover an approximate expression for f(x)
again by using Eq. (5.6) with A (2) =z, z = f(x)

& N
Sx)= 121 §1 e jg,l gjwj(x)
= g* o (o(x). (5'20)

For numerical calculations the impractical exponential
function of a matrix can be avoided by using the eigenrepre-

- sentation of 4
AvF) = A iyl k=1, N, (5.21)
Then «° can be expanded in the eigenvector basis
N
o’= Y o*N". (5.22)
k=1

The expansion coefficients o can be determined by compari-
son of Eq. (5.22) with (5.19), i.e.,

Z 0,(k) (k) 1 Aé‘]
k=1 " 217'1 & +z

which forms an inhomogeneous system of linear equations
for o'*). Now Eq. (5.18) reads, using Eqs. (5.21) and (5.22)

» J=1..N, (5.23)
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TABLE L. Comparison of a reference solution f given by Eq. (5.3) with the solution f°***™ obtained via Eq. (5.2) from o, the solution of the linearized
equation (5.16), using N = 15 nodes for path discretization. Here, f %2 i the best L,[ — 1, + 1] approximation of f by the functions expid *'x), k = 1,...,15,
where A *' are the eigenvalues of the matrix A given by Eq. (5.16). The f°°™ is an analytic continuation of the Taylor series.

x flx) femx) ) fox)
Re Im Re Im Re Im Re Im
0.0 0.000 000 — 1.000 00 —0.210387-9 —0.999 999 —0.981782-7 —1.00000 0.000 000 — 1.000 00
0.1 —0.990 099-1 —0.990 099 —0.990 098-1 —0.990 098 — 0.990.096-1 — 0.990 099 —0.990 099-1 — 0.990 099
0.2 —0.192 308 — 0.961 538 —0.192 308 —0.961 538 —0.192 308 —0.961 538 - 0.192 308 —0.961 538
0.3 —0.275229 —0.917 431 ~0.275229 —0.917 430 —0.275 230 —0.017 431 —0.275229 — 0917431
04 —0.344 828 — 0.862 069 —0.344 827 —0.862 068 —0.344 827 — 0.862 069 —0.344 828 —0.862 069
0.5 — 0.400 000 — 0.800 000 — 0.400 001 —0.799 998 — 0.400 000 — 0.800 000 — 0.400 000 — 0.800 000
0.6 —0.441 176 —0.735 294 — 0.441 221 —0.735 267 — 0441177 —0.73529%4 —0.441 176 —0.735 294
0.7 —0.469 799 —0.671 141 —0.470 563 —0.670 605 —0.469 798 —0.671 141 —0.469 799 —0.671 141
0.8 —0.487 805 —0.609 756 — 0.496 592 —0.602 726 —0.487 805 — 0.609 756 — 0.487 805 —0.609 756
o 1 0
ofx)= 3 exp(d “xjo*v¥), (5.24) o™ = @°, (5.25)

k=1

Numerical results are shown in Table I. The exact solu-
tion f(x) is compared with the Cauchy linearized approxi-
mation f ©*%(x), which has been obtained from Egs. (5.20)
and (5.24), where N = 15 nodes have been used to discretize
the contour S. Also shown is f “*(x), the best approximation
of f(x)inthe L,[ — 1, + 1] norm by functions from the sub-
space {exp(d *'x)|k = 1,...,N }. The table moreover displays
f °"(x), obtained by analytic continuation of the Taylor se-
ries using the expansion points x, = 0 and 200 Taylor coeffi-
cients, x, = 0.6 and 30 coefficients, x; = 1.2 and six coeffi-
cients, and x, = 1.8 and one coefficient. The results show
that the values of f “*<" have decreasing accuracy with
increasing distance from the initial value x = 0. The radius
of the disk of convergence of the exact solution is 1. Then
f €2uehY seems to break down at this radius. This default can
be cured and the accuracy can be greatly improved with little
additional effort as follows.

If we look for an approximate solution f “**"(x)in a
finite real interval 7 which includes the initial value point
x = 0(but may exceed the disk of convergence) we split / into
subintervals 7™ = [x"x™* 1], vy = 1,...,M. For simplicity
let xV = 0. Then one constructs piecewise approximations
inJ ™ starting with I V. The idea is to use the general solution
Eq. (5.18) in all intervals I ™, but with different vectors @*".
In IV one keeps the former solution with

with @° given by Eq. (5.19). From Egs. {5.18), (5.25), and
(5.20) one obtains approximately f(x®)

FxP) ke 0 AW~ X000, (5.26)

Then one determines a new initial vector ©*® for I ® in ana-
logy to Eq. (5.19) by requiring

! 2mi & — f(x?)
where f(x?) is taken from Eq. (5.26). Then one proceeds to
I® and obtains

Fix®)=E* 0 = — X y00). {5.28)

and so on. The results are shown in Table II for the real part
of the function. The imaginary part shows a similar behav-
ior. The best approximation f * is determined in the inter-
val I = [0,6]. For f “**% M — 16 subintervals have been
chosen. Also, N is the number of contour discretization
nodes. Then f €**% keeps six digits of accuracy over the
interval [0,6] while the analytical continuation suddenly
breaks down.

=1,..,N, (5.27)

VI. ORDINARY DIFFERENTIAL EQUATIONS OF nTH
ORDER

In this section it will be indicated that in analogy to Sec.
I1, in addition, a higher-order ordinary nonlinear differential

‘Table II. The same as Table I, but only for the real part of the functions. Here, N is the number of nodes for the path discretization, £ is improved by
recursive calculation of M = 16 initial values in the interval [0,6], and f “* is the best L, approximation in [0,6].

x fix) S o) £h4x) £
N=10 N=15 N=20 N=10 N=15 N=20

0.0 0.000000 —0.237 5419 4-0.305174-4 4+ 0.210387-9 +0.170386-1 —0.223 744-2 + 0.590 338-2 0.000 000
0.6 —0441176 --0.441233 —0441204 —0441176 —0.436595 —0440740 —0.439842 — 0,441 176
1.2 —0.491803 —0.492013 —0491812 —0.491803 —0.494 473 —0.492 181 —0.490 816 —0.491 803
1.8 —0.424 528 — 0424667 —0.424530 —0.424528 — 0424756 —-0.424239 — 0425060 —0.424 329
24 —0355030 —0.355117 —-0.355029 —0.355029 —0.352 833 —0.355316  — 0.355 665 —0.359 356
30 —0.300000 —0.300058 —0.299999 —0.300000 -—0.301213 —0299700 —0.298 886 div
36 —0257880 —0.257920 0257879 —0.257880 —0.258957 —0258180 —0.258476
42 0225322 —0.225 351 -0.225 321 —0.225 322 —0223694 —-0.225019 —0.226 088
48 —0.199667 —0.199689 ~0.199667 —0.199 667 —0.200093 —0.199 992 —0.198 760
54 —0.179045 —0.179 062 —0.179 045 —0.179 045 —0.179578 —0.178 832 —0.177 698
933 J. Math. Phys., Vol. 26, No. 5, May 1985 Helmut Kroger 933



equation can be written as a linear integrodifferential equa-
tion. We consider

33 f(x) = H(f(x),8 f(X),-...,0% ™ f(X))s (6.1)
with the initial conditions
fx)=a, O, flx)=ay., &~ 'fix)=a, (62)

We assume that 3% £, k = 0,..,n — 1 map the domain D into
Gint .

Let H (z,,...,z,) be holomorphic for (z,,...,2z,) € G". Let
us define

n=f »n=90,r .
and

H\(2y..52,) = 25, H,(245--52,) = Z35.-y

H,_ (zy...2,)=2,, H/(z1,.--s2,)= H(zy,...,2,). {6.4)

All H, are holomorphic for (z,,...,z,) € G".
Thus Eq. (6.1) reads

V=" f (6.3)

.y =H(yy,-,), i=1,.,n, (6.5)
with the initial conditions
yilx,) =a,. (6.6)
We define for § = (£,,.. ,§,,) €Go,
d 1
wlgr) = [ +——. (6.7
il;Il & —yilx)

with y; being given by Eq. (6.3).
Then one obtains, using Cauchy’s theorem,

_ 1 . . 1
Grolex) = 2mi)* £T°L"d§ fI=Il (1 +€)—£))
c H;(€) .
—_ , 6.8
“Egnra-p o
with
[as= [ de. [ g [ ., (6.9
in analogy to Eq. (2.11). The initial condition reads
w(Ex,) = ]n'[x 3 _1_ = (6.10)

in analogy to Eq. (2.12).

VII. PARTIAL DIFFERENTIAL EQUATIONS

In this section it shall be demonstrated how the trans-
formation used above can be applied to certain nonlinear
partial differential equations. Let us consider the following
type of PDE in three dimensions, i.e., a nonlinear Laplace
equation

Af=H(f) (7.1)

Examples are the sine-Gordon equation and the Liou-
ville equation.'® Again we assume that H is a holomorphic
function in G (Fig. 1) and f(x) € G,,, for every x in a given
domain D. If one tries to transform Eq. (7.1) into a linear
equation in the same way it was done for an ODE, one is
faced with a problem. The principle, which allowed us to
transform Eq. (2.1) into a linear equation, can be stated in the
following way. For each polynomial P'” there is a polyno-
mial Q ™ such that in some domain
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4 p " fx) =@ I f(x)). (7.2)
dx

That is, the class of polynomials of f(x) [the solution of Eq.
(2.1)] is at least approximately closed under application of
theoperatord /dx [the class of holomorphic functions of f(x)
is exactly closed]. However, this does not hold for the PDE
given by Eq. (7.1). If we define for £ € G,

o(g,x) = 1/[§ — f(x)], (7.3)
we obtain from Eq. (7.1)
Aw(Ex) = 2AVf/E ~fP + Af/E~fP (7.4)

In general the term (V/f)* cannot be expressed as a poly-
nomial (holomorphic function) of f(x). In the following,
three cases will be discussed which yield linear equations.

(a) We assume there is an auxiliary function H,, which
obeys

(VfY = Hyla, By f), (7.5)

where a, B,y are some generalized coordinates, being func-
tions of x, and H,(£,,...,&,) is holomorphic for (£,,...,£,) in G *.
We define for £ € G,

w(g,x) = 1/[§ — f(x)]. (7.6)
Then we obtain from Eqgs. (7.4), (7.5), and (7.1)
2Hl(a’ B:T’f) H(f)
a4 X} =
EN=T g Ty
2H\(a, B,y:5 ")
" 2 e—-+0f % [(§(1 +e ¢y
H(E') ,
Ell+e—€7 Joi 77

which is a linear singular integropartial differential equa-
tion.

Let us give just two examples for H,. If we consider the
one-soliton solution of the sine~Gordon equation in 3 + 0
dimensions, as given in Ref. 13, one obtains

H(a, By, f)=2(1 — cos( f)). (7.8)
If we consider the first nontrivial solution of the Liouville
equation in 3 + 0 dimensions, which is given in Ref. 13, one
obtains

H(a, By, f) =2 exp(f). (7.9)

(b) Let us consider a slight generalization of Eq. (7.1),
but only in two dimensions,

(0% + &) S ) =H(f,f ) (7.10)

Let H be holomorphic in G* and let f(x), f,(x), f,(x) be
elements for G, for every x in the domain D.

Now we assume there are H,, / = 1,2,3, holomorphic in
G2, which obey

K f=H(L S 1) (7.11)
0, f=Hyf [, /), (7.12)
& f=Hy\f,fe, /). (7.13)

The following example shows that this is no empty defini-
tion:
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fy=1x+y) @ +&)f=-U*+2° -2,
H\(z,2,25) =221, H,lz\2223) = — 22,25,
Hy(z,,2,,2;) = — 22 — 22,z;. (7.14)
" We denote
h=f fh=fe L=/ (7.15)
Af) =1 Aff)=H\(f), A4,f)=H,if), (7.16)
B\f)=/fs B,lf)=H,f), Bif)=H(f). (7.17)
Putting
2 1
w(€,x) = 'I=Il Py (7.18)

one obtains the linear first-order PDE’s

d.0kx)= hm

1 e 1
o (2mi L’dg kl;Il €l +€)—£%)
3 4,8

Xj;l m o(§',x),

(7.19)

d,0(&,x) = hm

1 J‘ 2 1
dt —_
o (2mi) Js® kl;In Ex(l +€)—&4)
<3 B;(€)
=gl +e—-£))
If, in addition to Eq. (7.10}, boundary conditions are
given, linear equations can be set up to determine the func-

tions H;, i = 1,2,3. Let us consider a rectangular domain
D = [x,,x,] X[ y,,»,] and assume the boundary conditions

f=a, fi=a, [f,=a;s (7.21)

hold on the left lower border R = [x,x,] X [ y,]ulx,]
X [¥1,¥.], where a; are some given functions. Integration of
Eq. (7.11) yields

a, fxy,) — 9, fx131)

=(2_117i)? L _dEH,(E) L de'
1

SN — s — )

o(E,x). (7.20)

(7.22)

or

f dEHER(Ex), x€[xxl,
(7.23)

where F,,R, are known from the boundary conditions. Simi-
lar equations are obtained by integrating Eq. (7.13) over y
and Eq. (7.12) over x or over y. Finally, the following holds:

. H=H,+H, (7.24)

Equation (7.23) and similar equations and Eq. (7.24) set up
linear equations for the determination of the functions H,.

(c) Finally, we want to set up linear functional equations
for the solution of Eq. {7.1).

We assume that the domain is real, i.e., D C R® and
Sf(x), V f(x) are given on 8D, the boundary of D. Let ¢ (x) be a
function which is twice differentiable in D. Then Eq. (7.4)
yields

F
(x)= R

4 HUY)

2
f dx Ao = f dx @ [ 2V/) 1. 23
&~ {5 -f)
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By uéing Green’s theorem, one obtains

fdx¢4w=f do[PVo — VP | +fdx(4¢)w
D 8D D

—g6)+ L dx(A® o (7.26)

f dx ¢ﬂ)—2——
D €—-rr
= —Lod"[(;v;)z * gf] —de'f%
—eie)— L dxi4® .

The functions g,,8, are known from the boundary condi-
tions. Equations (7.25)(7.27) yield

3
2 fD dx(AP (X)ol&x)

(7.27)

) 1 s
= —gl€)+280) + lim —.fds‘
&>+ 0 2770

v f dx—HE) olE' %),
b (E(1+e—¢)

for all £ € S and @ subject to the above-stated conditions.

But otherwise @ is arbitrary; it can be chosen, e.g., from an

orthogonal function system. The functions g,,¢, depend on

the boundary conditions on f and on @. Equation (7.28)

constitutes a linear functional equation for w.

(7.28)

VIIl. CONCLUSIONS

We have pointed out the importance of nonlinear differ-
ential equations in many branches of physics and the need
for practical solution methods. Here we have suggested a
new approach to solve nonlinear differential equations,
when the nonlinearity involved is of a holomorphic type. It
consists of transforming the nonlinear differential equation
into a linear integrodifferential or functional equation. The
solution of the latter can be transformed easily into the solu-
tion of the original equation. The transformed linear equa-
tion has been studied. Its basic features are the following: It
is an equation with a singular integral kernel. Its solution is
unique and it can be given a closed analytical form. Linear
functional equations in a Hilbert space have been given,
which involve properties of the solution outside the conver-
gence radius of its Taylor series. The kernel of the linear
integrodifferential equation can be studied in a Hilbert space
and it can be decomposed in a compact plus a bounded plus
an unbounded operator in a simple form. In addition, a
theorem on weak convergence of approximate solutions in'a
Hilbert space can be given. (The two latter results will be
published elsewhere.) The method has been tested numeri-
cally for one example and was found to give results accurate
up to the sixth digit if 20 nodes for the discretization of the
contour integral have been used, which we consider as excel-
lent convergence. All this has been done for first-order ordi-
nary differential equations.

The method can be applied also to higher-order ODE’s.
Application of the method to partial differential equations is
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not so straightforward. Nevertheless it has been shown how
linear integrodifferential equations or functional equations
can be obtained using knowledge of an additional constraint
equation or from boundary conditions. The type of PDE
considered here is a nonlinear Laplace equation, examples of
which are the sine~Gordon or the Liouville equation.

Finally we want to mention that the method can be
applied also to operator-valued differential equations, if the
operators are bounded. The basic tool of transformation to a
linear equation, which is the Cauchy integral, can be gener-
alized in the Dunford calculus'® to operator-valued func-
tions. We hope this might lead to useful applications in parti-
cle physics.

ACKNOWLEDGMENTS

It is a pleasure to thank M. Fortin and G. A. Philippin
for fruitful discussions. The author is indebted to G. Leib-
brandt and E. Meister for reading the manuscript and mak-
ing valuable suggestions.

This work has been supported by the National Sciences
and Engineering Research Council of Canada.

APPENDIX A: PROOF OF PROPOSITION 2

Here we want to give a proof of Proposition 2.
Corresponding to each g € &(G,,,) let us define ¢* and
Z'¢via

PEE)=18E") —gE NN — &)

EHE)=[PE"E) — P EEN/NE — &) (A2)
respectively, for all £,£' € G,,,. Then both ¥* and ='¢ are
holomorphicin G2, .Ifg € #(G,, XD,), ¥* and £ ¢ are de-
fined by

(A1)

P82 =[8E"2) —8l62)/E" — &), (A3)

EHE 52) = [P 62 — P¥6.421/6" — &) (A4)
forall¢'.£ € G, z € D,. Then both ¥#, =€ are holomorphic
in G2, XD,.

We claim that 4 defined on #/(G,,,) by Eq. (2.17) has
the following representation:

(Ag)(;)——fdg HEVEYEE), €S (AS)
This can be seen as follows. For £ € § one has
_ _ HE)
(g = lim 021rt[f C Eareo—EF
. . HE
X ete) — 26 +8t6) | de 5,)2].

E(l4+¢€)—
(A6)

The second term on the right-hand side of Eq. (A6) vanishes
because the integrand is holomorphic in the interior of S.
Thus, we obtain

€' —5)

ueNe) = tim L [ de i) 5 =5 )
- tim L _ =8
‘i“fozm Udg B ) eira—cy
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X(WHE£) — PEE)) + PEE) f dg’

XH(E') __(§_'___§)_'_] .
EM+e)—E&Y
Again, the second term vanishes on the rhs of Eq. (A7). Thus
one has

(A7)

€' —&)

g = tim - [ e ey KDz
— tim =L [ g Hig )5 He )
2ée
1— A8
|- msr Ea ey,

In the limit €~ + O the last two terms in the bracket give no
contribution, thus Eq. (A5) is obtained.

Now, we assume contrary to the claim of Proposition 2
that there is another " € D,,. We put

A(£2) = o'(E2) — 0"(E2) (A9)
Because @', " obey Eq. (2.12) one has for £ € §

4(z)=0. (A10)
Hence Eqgs. (A3) and (A10) givefor &', £ € S

Y€ 62)=0. (A1)
Similarly, Eqs. (A4) and (Al1l)imply for£',£€S

F4E£z)=0. (A12)

Equations (2.18) and (A5) can be applied to yield for £ € S,
zeD,

2 a6z )——fds‘ HENE“E £7) — E¥(E"£7)

L[ mgEee g (A13)
Hence Eqgs. (A12) and (A13) yield for£ €S
2 A€, =0. (A14)
az

By construction, 4 given by Eq. (A9) is a holomorphic func-
tionin G, X D,,i.e., 4 € #(G,, XD,). If we denote 4 " for
(£2) € Goye XDy, n =0,1,2,..., by

d n
g =(2) atea), (A15)
dz
thend ™ e (G, XD,) holds for all n = 0,1,2,... . In addi-
tion, 2", 4" € (G2, X D,)foralln =0,1,2,... [see defi-
nitions (A3) and (A4) and the following remark].
Next we claimfor £ € 8,ze D,, n =0,1,2,...,
avegn=-L [ HErEaega 19
27i Js
This is valid for » = 0 by Eq. (A13).
One immediately calculates
d n| ' n+ 1 '
Ez— ¢A( l(g £z) = W( ](g 62} (A17)
d —A o, —gn+l, o,
Lo €k =E (&"6.2), (A18)
for (£'£,2) € G2, XDy, n=0,1,2,....
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Now we assume that Eq. (A 16} is valid for n = n,. Then
we have for £ € S,z€ D,,

A* )

d (ng+ 1)
=2 Al
dz (£:2)

f dE' HE) L 54" b2

2m
—_ ’ nga™r e,
- f g HENE"""(€"£2),

where Eq. (A18) has been used. That proves Eq. (A 16) for all
n=0,1.2,...
Next, we claim for £ € S, n =0,1,2,...,

AV, _, =0, (A20)

This is valid for n = 0,1 by Eqs. (A10) and (A 14), respective-

ly.
So let us assume Eq. (A20) is valid for n = n,. That
implies for£',£ €S

(A19)

(
V€ D)., =0, (A21)
“which in turn implies for £ ,£ € S
247 £, =0 (a22)
Equations (A16) and (A22) yield for £ € S
A" ), -, =0, (A23)

which proves Eq. (A20) for ail n = 0,1,2,...

Since 4 € # (G, X D)), it can be expanded in a Taylor
series with respect to the variable z, around z = z,, for each
5es

AEZ= 3 ﬁA g2)|, - (2 — 2"

v=0

(A24)

This series converges in the largest disk around z,, where
A4 (£,2) is holomorphic with respect to z. But 4 (£,2) is holo-
morphic in D, by the definition of D,, .

Hence Eq. (A24)is valid for £ € S, z € D,. But Eq. (A20)
implies then for £ € S,z€ D,,

Az)= (A25)
Since 4 € (G, X D,), the theorem of identity of two holo-
morphic functions can be applied, which shows that Eq.
(A25) holds for all (£,2) € G, X D,, which finishes the proof
of Proposition 2.

APPENDIX B: PROOF OF PROPOSITION 3

Here we want to prove Proposition 3. Let us define for
8 € A(Goy), £ €G ot

(Ag)(f)——fdé HEVEHEE),

where Z¢ is given by Eq. (A2). Because Z'% ¢ o/(G2,,) [see
the remark after Eq. (A2)], the rhs of Eq. (B1) is a holomor-
phic function with respect to £ € G, i.e., Ag € & (G, ).
Comparing Eq. (A5) with (B1) shows that (4g)(& ) and (4g)(£)
agree for £ € S. The identity theorem for holomorphic func-
tions can be applied and yields the uniqueness of the exten-
sion A of 4.

(B1)
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Now let us consider ge€ .« (G, XD,), Hence
Z%e o/ (G2, XD,)and we define analogously to Eq. (B1)

(g)iez) = H dE" H(EN\EHE"£2)
T Js

Obviously, the rhs is holomorphic with respect to
(£.2) € G, XDy, ie., Ag< (G, XD,), which proves Eq.
(3.5).

One has in analogy to Eq. {A18)for £, € G,,,,z€ D,

(B2)

2 sag k) = EE ), (B3)
dz
Hence, Egs. (B2) and (B3) imply for £ € G,,,,, z€ D,
d i _ _1_ ' ] i —g et
(E;Ag) 6=-1 Jsd§ HiE) L 25 £
— __l_ ’ N (d/dzp e
- Ldé‘ H(ENE@ g £.2)
A d
- (A zg)@,z), (B4)

which establishes Eq. (3.6).
Equation (2.18) reads more explicitly for £ € S, z€ D,,

d
- ol§,2) = (w)(£.2). (B3)
'z
Using the extension A one obtains for £ € G, z € D,,
d A
5 oA = (4w)(&,2)- (B6)
z

Equations (B6) and (3.6) imply for £€G,,, zeD,
n=0,12,..

(2) otz = Aol

Because w € (G, XD,) it can be expanded in a Taylor
series with respect tozatz =z, foreach£ € G,

o= 3 (£ 2 oleall. e~z

which converges uniformly for £z in any double disk
D, XD, interior to G,,, XD, (see Ref. 17). Equations {B7)
and (3.3) imply

(%)"w(ﬁ 2)|—s, = (A 0)E2) .,

=(A"o N2, = A 0)E2).  (BY)

The last equality holds because , is independent of z and
application of 4 on @, does not create any z dependence.
Finally, Eqgs. (B6) and (B9) yield Eq. (3.7).

(B7)

(B8)

APPENDIX C: PROOF OF PROPOSITION 4

Here we give the proof of Proposition 4. Let h € 77,
For each £ > 0 the integral kernel corresponding to B, given
by Eq. (4.10) is a square-integrable function, hence B_h € 77°.
Moreover (B A )(#,x) is 27 periodic with respect to ¢. The
same holds for 33(B 4 )(,x), n = 0,1,2,..., hence B h € 7,
Introducing in analogy to Egs. (A3) and (A4)

gl — (80— h(B)
V= olis) —eplo)

(€1
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Ship b = V189X = P (bbx) -
O = caplid ) — explid) e
one obtains analogously to Eq. (A8)

_L "2 ’ ¥
B =1 [ " lr—x)

x [ dp’ explis 1 R explig )

[1 _ 2€ explid )
exp(i¢ )(1 + €) — exp(ig ')
€ exp(2id ) ]
(explig )(1 + €) — exp(ig ')}
XZ*p'px) (C3)
and in the € limit in analogy to Eq. (AS)

(Bh )(d,x) = ﬁ fxz dx' 0(x — x') f j s’ explid’)

X H (R explig ) =" (¢ ", $X"). (C4)
Since = " is 27 periodic and infinitely many times differ-
entiable with respect to ¢ ',é, so is {BA )(¢,x) 2 periodic and
infinitely many times differentiable with respect to ¢. That
implies also for (Bh )(¢,x) to be square integrable with respect
to (¢,x), hence Bh € 77,
Next we congider the Hilbert adjoint of B,. One can
easily verify that B,, defined on % by

A 1 x2 , ,
Bgipr) = f dx' 0(x' — x)

exp( — i )(H (R explig ))*

P o= BN+ —expl — b
Xgl@'x), (C5)
fulfills the requirement of a Hilbert adjoint of B, i.e.,
(gB.h) = (Bglh), (C6)
for all g, & € 77, and thus
Br =5.. (C7)

In analogy to B, one verifies that B * maps 7, into .
Next we give the definition and study properties of a
“Hilbert adjoint” of B. Let B be defined on 57, by

(Bh(gx) = lim (B h)d.x). (C8)
One can write Eq. (C5) in the form
(B h)dx)
_ xplig NH (R explid )* (™ 1o g _
27R X,
x| a e }-?-)(ez)mi )exp(i¢ e

h(g'x').
(C9)

In analogy to Eqgs. (A8) and (C3) one has

(B "R )$x)

_ N R expld))* [ g g1y
27R x1
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2€ explid )

Il explig 1 + €) — explig )

€ exp(2ig) =4 px) (CI0

(explig (1 + €) — explig "))’ ] =7, (Clo

which yields in the € limit in analogy to Eqgs. (A5) and (C4)

(Bh (%) = XU )H (R explig ))*
27R

fzdx’B(x’—x)

T

X d¢ ' exp(2ig’) Z*(¢ " d,x').

Similarly as above one concludes that B maps 5, into 77,
Next we claim that for every h € 57,
i

(C11)

B.h — Bh — 0, (C12)
€—0
A b
BXh—Bh — 0. (C13)
e—0

We noted already that (B4 )(¢,x) and (B ;" & )(¢,x) con-
verge pointwise to (Bh )(¢,x) and (Bh )(¢.x), respectively. It
turns out that they even converge in the sup norm which
guarantees the convergence in the L, norm. Let us verify it
for B_h. According to Eqgs. (C3) and (C4) we have to estimate

(Beh — Bh)(¢,x)
__L F dx 0x—x) [ dg’ explis’)
2mR x, -
L — 2e explig)
<R eyl [P
62 exp(2i¢ ) Eh ' ' X C14
mrrre e S
Similar estimates have been performed in Ref. 18.
We define

H = sup |H(£)|, (C15)
£eS
s = S |2 (g0 " X)) (C16)

¢’ —m+ 7
Due to the 27 periodicity with respect to ¢ of the functions in
Eq. (C14), one can change in Eq. (C14) the boundaries of ¢’
integration [ — 7, + 7] to [¢ — m,¢ + 7). Then we estimate

\(B.h — Bh ""”"’KE?IE H(x, —x)) 5

M 2¢
Xf_,d‘” ‘1+6—exP(i(¢'—¢))

2

‘ - (C17)
1+e—expliig’'— )
The substitution ¢ ' — ¢—¢ " shows that the integral is inde-

pendent of ¢. Thus we can estimate

Bk~ BhNgx<M [ ds”2

€
1 +e—explig”)

€
14 € —explig ")
We split the integration interval

[—m+al=[—m—Velul —Ve +Ve]u[ +Ver].
(C19)

: (C18)
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In the first and third interval, the integrand can be estimated,
using

¢ ¢ ~ €. (C20)

1+ € —explig ") 1+ €—exp(+ive) |l «<°
In the second interval, the integrand can be estimated, using
|e/[1 + € — explig ")]|<1. (C21)

Thus the integral in Eq. (C18) tends to O with e—0, because
either the integrand tends to O (first and third interval) or the
integrand is bounded but the length of the interval tends to 0
(second interval). Thus we obtain

|

sup |(Bch — Bh)éx)| = O, c22)

pel—m +
x € [x),%3]

which guarantees Eq. (C12). Analogously one obtains Eq.
(C13). Now we have for g, h € 7%,

(g|Bh)=(g|(B—B.)h)+ (B glh)

=(g|(B—B.)h) +((BF —B)glh) + (Bglh).
(C23)

Due to Egs. (C12) and (C13) the first two terms on the rhs
vanish with e—0, hence

(g|Bh) = (Bglh). (C24)
We define
B*=38 (C25)

and call it the “Hilbert adjoint” of B.

'0. W. Richardson The Emission of Electricity from Hot Bodies (Long-

939 J. Math. Phys., Vol. 26, No. 5, May 1985

mans, Green, New York, 1921}, pp. 50-54; M. V. Laue, Jahrb. Radioakt.
Elektron. 18, 205 (1918).

’H. Bateman, Partial Differential Equations of Mathematical Physics
{Cambridge U.P., Cambridge, 1964}, pp. 166-168.

3W. F. Ames, Nonlinear Partial Differential Equations in Engineering
{Academic, New York, 1965), pp. 180-183.

4S. Richardson, Mathematika 27, 321 (1980).

5G. W. Walker, Proc. R. Soc. London Ser. A 91, 410 (1915).

SD. Olive, “Classical Solution in Gauge Theories-Spherically Symmetric
Monopoles-Lax Pairs and Toda Lattices,” Imperial College Preprint
ICTP/80/81, Imperial College, London.

L. P. Eisenhart, Differential Geometry of Curves and Surfaces (Dover,
New York, 1960).

8A. J. DeMaria, D. A. Stetser, and W. H. Glenn, Jr., Science 156, 1557
{(1967); G. J. Lamb, Jr., Phys. Lett. A 25, 181 (1967); Rev. Mod. Phys. 43,
99 (1971).

9H. Washimi and T. Taniuti, Phys. Rev. Lett. 17,996 (1966); F. D. Tappert,
Phys. Fluids 15, 2446 (1972).

'B. D. Josephson, Phys. Lett. 1, 251 (1962); P. W. Anderson and J. M.
Rowell, Phys. Rev. Lett. 10, 230 (1963).

'R, Dashen, B. Hasslacher, and R. Neveu, Phys. Rev. D 10, 4114, 4130,
4138 (1974); D 11, 3424 (1975); R. Rajaraman, Phys. Rep. C 21, 227
{1975). See also “Extended Systems in Field Theory,” edited by J. L. Ger-
vais and A. Neveu, Phys. Rep. C 23, 236 (1976).

2M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett.
30, 1462 (1973); 31, 125 (1973).

13G. Leibbrandt, R. Morf, and S. Wang, J. Math. Phys. 21, 1613 (1980); G.
Leibbrandt, S. Wang, and N. Zamani, J. Math. Phys. 25, 1566 (1982).

Proceedings of the International Conference on “Nonlinear Differential
Equations: Invariance, Stability and Bifurcation,” Trento, Italy, 1980,
edited by P. de Mottoni and L. Salvadori (Academic, New York, 1981).

\SE. Hille, Ordinary Differential Equations in the Complex Domain (Wiley,
New York, 1976).

'W. Rudin, Functional Analysis McGraw-Hill, New York, 1973).

YIL. Bers, Introduction to Several Complex Variables (Courant Institute of
Mathematical Sciences, New York University, New York, 1964), Chap. 1,
Corollary 5; H. Behnke and P. Thullen, Theorie der Funktionen mehrerer
komplexer Veranderlichen, Ergebnisse der Mathematik and ihrer Grenz-
gebiete (Springer, Berlin, 1970), Vol. 51, Chap. 3, paragraph 4.

'8H. Kroger and C. C. Fenske, Rep. Math. Phys. 17, 459 (1980).

Helmut Krbger 939
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A simple analytical expression for Lowdin’s alpha function is derived. This expression is expected
to be more convenient with the expansion of a general function about a displaced center than any

other available in the literature.

I. INTRODUCTION

In many nuclear and electronic physics problems we
are faced with “the problem of shifted origins,” where we
need to expand a function F (R) = f(R )Y 7(R) in terms of the
vectors r, and r, in the form

SIR)YTR)= ; (l,myl,m — mlllllsz>
hilpm,

Xa(ll’IZ’L9rl’r2’f)Y;?l(nl)y;: - '"1(02)’
(1)

where

R =r 1 + 1‘2 (2)
and the solid harmonic Y 7(R) is defined in terms of the
spherical harmonic Y 7'(2;) as

YZ(R)=R"Y[(2:) =R “Y7(6r.$r). 3)

Such an expansion would enable us to evaluate physical
quantities like electronic energy, electric dipole transition
probabilities, molecular dipole moments, and various other
quantities which are usually expressed in terms of integrals
of the translation operator known as the multicenter inte-
grals. :

In the special case when r, lies on the z axis and is de-
noted in the spherical polar coordinates (r,,0,,¢,) by

(r20,4,) = a, )
Eq. (1) takes the form

SR)YIR)=f(R)YL(r, +a)

172
=5 (Lumity Ol L) [3’—1—‘]
A 4qr

Xa(ll’lz’Lsrva,f)Y;:l(nl)» (5)
where we have used
Y7 (0,¢) = [(2 + 1)/47])'%6,,,. (6)

Because of the history of the problem many attempts
have been made in the past to derive an analytical expression
for Lowdin’s' alpha function a(/,,/,,L,7,,a, f) appearing in
Eq. (5). Recently Suzuki? has attempted to derive some re-
currence relations that would make numerical computations
easier. However, his study was based on two analytical ex-
pressions derived previously by Sharma® and Silverstone et
al.,* respectively. Sharma’s expression® involves the summa-
tion over four indices while that of Silverstone ef al.% con-
tains only three. Neither of these expressions visibly reduces

®* Current address: Department of Mathematics, Mu’tah University, P.O.
Box 5076, Amman, Jordan.
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to the well-known special case when f(R } = 1. Thesolid har-
monic Y 7(R) = Y 7(r, + r,) is expressed by Eq. (12.41) in
Talman’ in terms of the solid harmonics Y}"(r,) and
Y7 ) as

i _ 4r{2L + 1) 172
YZr +r)= 3 [(211 + )N2L — 21, + 1)!]

X{lymyL — I,m — my|I(L — 1,)Lm)
XY )Y 72 (r), (7)

which, when r, = a, reduces to

Y7, +a) =} aL"*[

4

iymy

(2L + 1)! }Vz
(20, + 1M2L — 21,)

X{l,m;L —1,0|L(L — L)Lm) Y 7(r,).
(8)
In this paper we will derive an analytical expression for
the general function a({/,,/,,L,r,,r,, f) appearing in Eq. (1) and
then deduce the special case when r, = a and find the simple
expression for Lowdin’s alpha function in the form (we will
prove later that /, can only take the value /, = L — [})

allyLyrya, f) = [a" 7"l (1, + 3)/1]

[ 42L + 1)) ]1/2
(20, + 1)/2L — 21, + 1)!

X f fA)sin®" * 0 de, 9)

where A2 =1r} + a® + 2ar, cos @ and the integral may be
written as

f fA)sin®" ' o de
(¢]
1 +r f /{ )dll
. S 24 f(
(2arl)211 + 1 la—rl
x{4a’r — (A2 —a® - R}". (10)

It is worth noting at this stage that when f(R)=1, Eq. (9)
gives

a(lleyrl)a’ 1)
= [~ "ir, + /1]
[ 42L + 1)! ]1/2[ NEaA ]
(24, + 2L =21, + 1)t ri+3
_gth :.[ 4r(2L + 1) }m (11)
"l@r+ e — 21 + 1)
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Substituting Eq. (11) in Eq. (5) we reproduce Talman’s rela-
tion given by Eq. (8). Similarly, in the general case our expan-
sion given by Eq. (1) reduces to, on using Eq. (32), Talman’s
relation given by Eq. (7) when f(R )= 1.

il. CALCULATION OF a(/,,,L,r1.» )

Using the orthonormality of the spherical harmonics
we invert Eq. (1) as

(11,11§12,L - I]llllzLL )a(lplz»L,"n"zyf)
= f FIR)YER)Y }2)Y ™ "(2,)d02, de2,, (12)

where we have chosen m = L and m, = /, and use the usual
notation d{2 = sin 6 d9 d¢. In the spherical polar coordi-
nates (R,6,¢ ) Eq. (2) gives

R*=nr 41 +2rn,
X {cos 8, cos 8, + sin 6, sin 6, cos(@, — &)} (13)
and
Rsin 6 e® =r, sin 8, e?' + r, sin 6, . (14)
In order to evaluate the integral appearing in Eq. (12)
we need Eq. (2.5.5) of Ref. 8 in the form
% : ; 1172 .
o) LU (B =) g
27 4m(j + m)

d V+m .
8—1)
X(d cos 9) (cos )
REL JLETE m)!}l/zsinm 9 i
27 47r(j + m)!

(— 1P(2 — 2x)lcos’~ ™~ @
X‘é xU(j— x)j— m — 2x)!
=(- 2)"‘[—————(Zj UL/ — m)’] 7 sinm g ¢
4(j + m)!

_J

§ (= Iy + joos "6
T X J(j—m—2x+ )\ {§(j—m —2x + 2)}
(15)
where we have used the duplication formula
Vor L(22)=2=""T' ) (z +)). (16)
When m = j, Eq. (15) gives

YiR)= (—1F [(ZL + 1)!]1/2 (R sin @ e™#)E

2LL) 41
=(—1)L[(2L+1)!]1/2 L!
200 | 4 = TN — k)
X (r, sin 8, e®)F ¥ (r, sin 8, )%, (17)

where we have used Eq. (14).
We also need Eq. (3.6.13) of Ref. 8 as

(lyl, L — L LLLL ]
_ l (2L — 1)124) }"2' (18)
LAL—BNL A+, + D+ 1)
Using Eqgs. (15), (17), and (18) we write Eq. (12) as
a(lylLiryry, f)

Ak " . —
=§———iﬁ’zx)£ delsmL“ "“el

XJ_VdezsinL+k—I,+lcosll+12—L—?.x
0

21
XJ. d¢‘ e(ik+ll—L)¢2

0

Xf Z”f (R)e“ " gy, (19)

where

n'R(=Iri—x+)

A (kx)=

YL — kW {3, + b, — L —2x + )T {30, + b, — L — 2x + 2)}

« [17(211 + )L+ Wh+ L —LML+ L =W+ L+ + 1)!}1-2 . 20

(L+5L-0)
We now put ¥ = ¢, — ¢, and notice Eq. (13) showing
that R takes the same value
R =7 4+ 7 + 2rr,{cos 8, cos 8, + sin 6, sin 6, cos ¢,},

when 1 takes either of the values ¢y = — @, or ¢ =27 — ¢,.
We therefore write

2w 2 .
J; J; f(R )ei(L—Il—k)(¢|—¢z) d¢l d¢2

2 27 — by )
= [Tag [ T rmitt vy
0 —é2

27 Ro
=f0 46, [ " G(R)dR = 471 plooo: 1)
where
pr=r4+r +2rr,cos(d, —0,). (22)
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Thus Eq. (19) takes the form

a(lyh, L1y, f)
=34 (k,x)f do,sin" "%+,
kx 0
XJ-”f(p) sin" ¥ h*g, cos" T2 g, do,.
(V]

(23)

This general result could also be represented by a dou-
ble integral over a plane area in polar coordinates as

a(ll,lzyLyrl,rsz)

=§A(k,x)J:fG(p,oz)

XsinL+k_ll+lezcosll+lz-L—7-x62pdpd02, (24)
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where
G(po)=—LL g+ (5 16, 25)
r,r,sin 6,
B=cos™' {(p* =11 — )2y}, (26)
F=r +r,-2rr,cos 6% (27)
and '
b*=1r +r +2rr,cos 0, (28)

We will now consider two special cases. The first is to
show that Eq. (1) reduces to Talman’s equation (7) when

f(R) = 1. Thesecondistoshow that the general result of Eq.
(24) reduces to Eq. (9) when r, = a. Both proofs start from
Eq. (19).

When f(R) =1, Eq. (19) shows that the angular inte-

grals vanish unless k=L —/, and the integer
(I, + I, — L — 2x) is even. Under these conditions the angu-
lar integrals give
42 INL — IW7 T {(M, + 1, — L —2x + 1)} 29)
ri,+3)r{yiL+1,—1,—2x+3)}

and the summation over x could now be evaluated using Eq.
(A1.2) of Ref. 8 as

]
s (=Iyrihb—x+1)
< X+ L—L)—=x}\C L+ 1, — 1,2x 4 3)}
e R N e e Ny A AT 2
= = 5Ll+l’ (30)
Bh+L—-LYWCL+15,—1,+3)) 2L 2, +1 0t

where we have use the relation
'n-z/M(-z=(-1)Tz—n+1)/Tz+1). (31)
Substituting Eqs. (29) and (30) in Eq. (19) we get
a(Il’L - ll’rl’rZ’l)
1 172
=rr " { dwi2l + 1) ] (32)
(20, + IM2L — 21, + 1)

which when substituted in Eq. (1) reproduces Talman’s
equation (7).

For the second special case when r, = a, that is 8, = 0,
we have

-
L4+ k=1 i I h—L—2x
foIn tholitlg cos'ith 6, db,
0

27 2w
XJO J; e‘(L"Il—k)(¢1—¢z) d¢1 d¢2. (34)

Equation (34) again shows that the angular integrals vanish
unless k = L — I, and the integer (/, + [, — L — 2x) is even.
Thus we have

T
s L+k—1+1
f sin ' g, cos

0
2T A1 — ki — )
ML 1 — K —
X[ [Ty, a,
(¢]

I,+12—L—2x62d02

R=7r +a*+2ar,cos b, (33)
Thus Eq. (19) takes the form = 4 J: sin %1% g, cos T2 9, do,
a(ly,l,,L,rya, f) (L - L)\&r {5(11 +5L,—L—2x+1)} ) (35)
=2A(k’x)ff(R>s1 nHh kg, dg, o Pt h—h—2x 4+ 3)
Substituting Eqgs. (20) and (35) in Eq. (34) we get
M|
allylL,ra, f) = {77’(211 + )L+ W+ L LWL+, — LYWL+ 1+ L, + 1) ]1/2
L+l —1)
ria" " 1°r(
X*ﬁ‘—f f(R)sin®"*' 9, db, s (=1 —x+)) : (36)
p X AT A XML+ L, —L)—x}WC 3L +1,— 1, + 3)}
.

The above summation over x is the same as that evaluat-
ed by Eq. (30) and when substituted Eq. {36) immediately
reproduces Eq. (9) on noting Eq. (16).
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The Hamiltonian structure of a complex version of the Burgers hierarchy
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In this paper we construct a class of integrable Hamiltonian nonlinear evolution equations
generated by a purely differential recursion operator. It turns out that this hierarchy is a complex
version of the Burgers hierarchy and can be linearized through a generalization of the Cole—-Hopf

transformation.

I. INTRODUCTION

In recent years, a number of remarkable results have
been obtained in the field of integrable Hamiltonian systems
with infinitely many degrees of freedom.' The essential
property shared by all such systems is the existence of a two-
fold Hamiltonian structure, generated by a Poisson and a
recursion (Nijenhuis) operator, well coupled to one another.?
However, to our knowledge, all the integrable Hamiltonian
evolution equations so far introduced have been shown to be
associated with integrodifferential recursion operators.’
Thus, we wondered whether there exists a hierarchy of non-
linear Hamiltonian evolution equations generated by a pure-
ly differential recursion operator. In Sec. II we exhibit a class
of nonlinear evolution equations (NEE’s) which is nothing
but a complex version of the Burgers hierarchy, generated by
a first-order differential recursion operator. In Sec. III we
prove that this recursion operator is a Nijenhuis operator
and that the whole class has a twofold Hamiltonian struc-
ture. In Sec. IV we exhibit a field transformation which, as in
the Burgers case, allows one to linearize any equation in the
hierarchy.

Il. THE COMPLEX BURGERS HIERARCHY

Let us introduce the following linear differential opera-
tor:

Lo:=ip, +u,@, (2.1)
where u and @ are complex functions of the real variable x
(say, space), possibly parametrically dependent on a further
real variable 7 (say, time). Moreover we assume that u,, and ¢
vanish rapidly enough as [x[— .

Then, the complex Burgers hierarchy is given by

u, = h (L)S(iu, exp( — i(u — u))), (2.2

where 4 (z) is an arbitrary entire function and the operator S
is defined as

Sa: = i expli(u — u))-a. (2.3)

Concerning formulas (2.2) and (2.3) we point out that, al-
though the exponential factor exp(i(u — %)) cancels for any
equation of the hierarchy, it plays an essential role in the
definition of the operator S, as will be shown in Sec. III.

The first equation in the hierarchy is obtained by setting
h (L) = 1 and reads

U, = —u,. (2'4)
The next equation, corresponding to % (L) = L, is given by

u, = —iu,, —(u, ) (2.5)
943 J. Math. Phys. 26 (5), May 1985

0022-2488/85/050943-03%02.50

In terms of the new fields g = u,,, it becomes

9. = — iqxx - qux‘ (2'6)
Equation (2.6) is easily recognized to be a complex version of
the well-known Burgers equation. On the other hand, it
might be worthwhile to write down Eq. (2.5) in terms of the
real and imaginary parts of ¥ = v + iw:

v, = Wee — ) + (W), (2.7a)

w, = —v,, —20,Ww,. (2.79)

The next simplest equation, corresponding to 4 (L) = L?,
reads

u, =, —3iuu, — W)’ (2.8)
In terms of g, it becomes
9, = (gxx — 3iq, — @)s- (2.9)

Equation (2.9) is clearly a complex version of the second
equation in the Burgers hierarchy.** The corresponding sys-
tem for v and w reads

Uy = Usxx + 3(vxwx )x + 3vx(wx )2 - (vx)s’ (2108)
W, = Wx — 3((vx )2 - (wx )2)x /2 + (wx )3 - 3(vx )zwx'
(2.10b)

Iil. THE HAMILTONIAN STRUCTURE

In this section, we will derive the Hamiltonian structure
associated with the hierarchy (2.2). To this aim, we have at
our disposal two different approaches: the first one,® mainly
associated with the names of Gel’fand-Dikij, Lebedev-
Manin, Kupershmidt-Wilson, and Adler, is of fairly alge-
braic nature, and relies on the properties of certain infinite-
dimensional Lie algebras (i.e., the algebra of pseudodifferen-
tial operators of negative degree); the second one, essentially
geometrical in nature, investigates directly the integrability
structure as tensor fields defined on some infinite-dimen-
sional differentiable manifolds.>” We will follow the latter
approach, relying extensively upon Refs. 3 and 7, both for
the theoretical background and for the notations.

Accordingly, we will regard u as a point in the manifold
A (henceforth denoted as “configuration space”) given by
the affine hyperplane of the Fréchet space F: = C= (R,C),
formed by C* complex-valued functions defined on the
whole real axis and obeying preassigned asymptotic condi-
tions. Correspondingly, the tangent space T,, whose ele-
ments will be denoted by the last letters in the Greek alpha-
bet, is the space of C* complex-valued functions of the real
variable x, obeying homogeneous asymptotic conditions.

© 1985 American Institute of Physics 943



The cotangent space T'¥, whose elements will be denoted by
the first letters in the Greek alphabet, is the same space as
T,, and can be put in duality with it through the nondegener-
ate bilinear form:

(a.p) = Jt: dxap +ap)=2 Ref

— oo

+ o

dx ag.

By direct calculations, one can easily prove the follow-
ing propositions.

Proposition 1: The recursion operator L, which maps
the tangent space into itself, is a Nijenhuis operator, i.e., it
satisfies the following “‘zero-torsion”” condition:

L'(g;Ly) — L'(¢;Le) = L[L'(@;¢) — L'(¥s@)],  (3.2)
where by L'(p;y) we denote the Gateaux derivative of the
operator L evaluated at the point ¢ in the ¢ direction.

Proposition 2: The operator S is a Poisson operator, i.e., it
maps the cotangent space into the tangent space and fulfills
the following two conditions:

(@,S8) = — (B,Sa)
{a,S'(8;Sy)) + cyclic permutation = 0.

(3.3a)
(3.3b)

Proposition 3: The Nijenhuis operator L and the Poisson
operator S are well coupled, i.e., they fulfill the following
conditions:

(skew symmetricity),

L-S = S-L* [L* is the adjoint of L wrt (3.1)], (3.4a)
(a,L'(SB;p) — L'(¢;SB))
= (B,S'(a;Lgp) — L'(p;Sa) — LS'(a;p)). (3.4b)

Thus, they endow .# with a Poisson—-Nijenhuis structure,
or, equivalently, with a twofold Hamiltonian structure, de-
fined by the Poisson operators S and M: = L-S.

Proposition 4: The operator Q,(u) = iu, expli(z — u)) is
a potential operator, i.e., it maps the configuration space into
the tangent space and satisfies the condition

(Q1-g¥) =(Q1¢¥p). (3.5)
Moreover, it is well-coupled with L, i.e., it satisfies the condi-
tion
(L*Q @) — (L*Qi-¥p)

= (QuL'(@:¥) — L9 ))- (3.6)

From Propositions 1 and 4 it follows then that all the
operators

0, (u): = (L*)"~'Qy(u) (3.7)
are again potential operators.

Let us now, for simplicity, restrict considerations to the
case A (2) = z". It is easily seen that any equation in the hier-
archy (2.2) can be cast in the form

u, =L"7'SQy(u) = S(L*)" ~'Qy(u) =SQ,(u).  (3.8)

Propositions 1-4 then entail that the following hold.

(i) The twofold Hamiltonian flows H,(u)
: =80, (u) = MQ, _ , (u) are commuting flows, i.e., we have

[H,H.]:=H;-H, —H}-H =0. (3.9)

(ii) For any such flow, there exist an infinite set of inte-
grals of motion I, [#], in involution with respect to the Pois-
son bracket,

(F,G}:=(V,FSV,G), (3.10)
which, for instance, can be evaluated through the formula
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I, [u] =f dA (Q,(Au)u). (3.11)
We report here the first integrals of motion:
1,]u) =j+wdx explie — u)](u, + @.), (3.12a)
L[u] =J-+w dx expli(@ — u)(@, u,), (3.12b)
Lu] = f+ ) dx explilu — u)]
X [ﬁxux(ﬁx + ux) - i(uxax.x - Exuxx)]‘
{3.12¢)

IV. SOLUTION THROUGH A LINEARIZING
TRANSFORMATION

Let us now perform a change of local chart on our mani-
fold, by means of the point transformation

rix,t) = exp( — iu(x,t)). 4.1)
We will show in this section that, through the transforma-
tion (4.1), which can be considered as a complex version of
the well-known Cole-Hopf transformation, the whole class
(2.2) is linearized. To this aim, we take advantage of the
transformation properties implied by (4.1) on tangent and
cotangent vectors and on field-dependent operators. We re-
call here just the results, referring to (2) for the details. For a
given change of local chart in our manifold, given by

r=ru), (4.2)
we have

@, =r"g, (4.3a)

a, =(r')*a,. (4.3b)

Accordingly, the potential operators obey the transforma-
tion law

Q(u)=(r*Q(r), (4.4a)
while for the tensor operators L and S we have

L, =rL, (4.4b)

S, =r'S, {r)*. (4.4¢)

Hence, for the transformation (4.1) we have the simple rela-
tions

o, = —irg,, (4.5a)

a, =ira,, (4.5b)

L, =rLsr}, (4.5¢)

S, =rS, 7. (4.5d)
Then, we can conclude that the hierachy of NEE’s,

u, =L, u,, (4.6)

gives rise, in terms of the new field r, to the hierarchy of
linear evolution equations:

r,=(@Fd.) 'r,, 4.7)

whose Cauchy problem can be trivially solved by the Fourier
transform.

For the class {4.7), the Nijenhuis operator is just “/ d,,”
and the Poisson operator is nothing but the imaginary unit
“f.” The integrals of motion 7, [1], which, due to formulas
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(3.11), (4.3a), (4.4a), are invariant with respect to any point
transformation, are now given by

I,[r] = f+ ) dxHid.)"r.

—

(4.8)

V. CONCLUSIONS

To end this paper, we would like to remark that, al-
though the starting motivation for the present research was
technical in nature, we obtained new completely integrable
NEE’s which, due to their mathematical simplicity, could be
relevant for applications.
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A fundamental result of Geroch is that a space-time admits a spinor structure if and only if it is
parallelizable. A nonsymmetric, metric-compatible curvature-free connection is associated with a
global orthonormal tetrad field on such a parallelizable space-time. This connection is used to
examine reported inconsistencies for > | spinor field equations on general space-times. It is
shown that the assumed Levi—Civita transport of Clifford units causes the inconsistencies at the
Klein—Gordon stage. The relation of the torsion tensor of the parallelization connection to the

space-time topology is indicated and the Lorentz covariance of the modified Klein~Gordon
equations is demonstrated. A particularly simple plane-wave solution form for free-field
equations is shown to result for locally flat space-times for which the torsion tensor is necessarily

Zero.

- 1. INTRODUCTION

A number of treatments of classical field theories on
curved space-times exist in the mathematics and physics li-
terature.'* In particular, Weinberg® gives a very thorough,
physical discussion of tensor and spinor wave equations on
arbitrary space-times. Many other papers have appeared
which presented detailed calculations of solutions to field
equations on various background geometries.®*®

Few, if any, of these papers cite the severe limitations
placed on the existence of global spinor solutions implied by
the fundamental theorem of Geroch® that a space-time
(M, g) admits a spinor structure if and only if it is paralleliza-
ble. On a space-time, this implies that the manifold admits a
global C* orthonormal (0-n) tetrad field (k > 2 assumed).

Recently, using global tetrad fields definable on such a
parallelizable space-time, a covariant Dirac theory was re-
ported'® which generated natural torsion terms associated
with the metric-compatible, torsional connection'"2 ¥, de-
fined by a tetrad field as a smooth section of the space-time’s
principal bundle of oriented o-n frames O * (M ). The torsion
appeared naturally, not in the dynamical Dirac equation,
but rather in the associated Klein~-Gordon equation for the
Dirac amplitude #(x), where a spin-torsion coupling term of
the classic ECSK'*'* form appeared.

The present paper examines the implications of the use
of an o-n tetrad field to represent the Dirac algebra (or the
Infeld-van der Waerden symbols in general treatments). In
particular, reports of inconsistencies in Klein—-Gordon equa-
tions for higher spin fields on curved space-times®**® are ex-
amined in light of the assumed Levi-Civita transport proper-
ties for the Dirac gammas and Infeld—van der Waerden
symbols.

Alternate forms for Klein—-Gordon (KG) equations are
obtained for the Dirac and Rarita—Schwinger cases. These
equations contain tetrad-torsion terms and are consistent
without curvature restrictions on the space-time. The Lor-
entz covariance of the modified KG equations is exhibited in
Sec. I1I.

Noting that the vanishing of V torsion is possible only
on locally flat space-times® for which V = V; a general con-
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struction method for global solutions to free field equations
is exhibited for such cases. These plane-wave-like solutions
are shown to be a natural generalization of plane-wave func-
tions on flat Lorentzian R *.

We shall deal herein only with parallelizable space-
times since they admit a spinor structure. Our signature will
ben=(— — — +)throughout.

Il. THE DIRAC ALGEBRA AND THE TETRAD FIELD

Spinor theories are restricted to parallelizable space-
times due to the fundamental result of Geroch® that a space-
time admits a spinor structure if and only if it admits a glo-
bal, o-n C° tetrad field. A global tetrad field X, (x) (a = 1, 2,
3, 4)is a smooth section of O (M ), the trivial principal bun-
dle of oriented o-n frames for the space-time (M, g). An o0-n
tetrad field induces a metric-compatible connection'"'? V
with curvature R = 0 and torsion 7. Full SO*(3, 1) gauge
freedom remains to smoothly vary the local tetrad. Each
tetrad field invariantly defines a connection V as an addi-
tional manifold structure. The vital topic of Lorentz covar-
iance of spinor field equations is discussed in Sec. III.

In both classical and quantum gravity theories, “dyna-
mical” tetrads and torsions are often discussed.'® For exam-
ple, Einstein’s equations are often written in a tetrad basis
and the tetrad is considered to be a dynamical variable.'?
Here, we introduce o-n tetrad fields on a predetermined
space-time (M, g). Neither V nor 7 affects the dynamics of
fermions since neither enters the first-order dynamical equa-
tions of Dirac, Rarita—Schwinger, etc. The *field equations”
for the tetrad fields are V, K * = 0 since they parallel trans-
port via their induced connection V. But, the V connection is
curvature-free (integrable). Thus, the tetrad field equations
are not causal and hence the tetrad is not dynamical. The
tetrad field is simply an assignment of a global set of Lorentz
frames which, for example, might conveniently be taken to
be the rest frames of a global observer congruence. An o-n
tetrad field generally cannot satisfy causal (Levi-Civita) field
equations, e.g., V, K4(x)=0, V,K% =0, or gV, V K7

=0.

But, notable as exceptions are those extremely special
cases where the Levi-Civita curvature is zero, which implies
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that V is integrable (in fact V = V~for such locally flat cases).
This distinction between V and V was the substance of the
famous “distant parallelism” dialogue between Einstein and
Cartan.'

The appearance of the torsion tensor 7 in the second-
order Klein-Gordon equation of spinor theories is crucial
because it allows an examination of the typical assumptions
used to construct S>>} spinor equations on curves space-
times. The usual equations are well known to be torsion-free
(by construction) and inconsistent®* at the Klein-Gordon
stage except on highly restricted space-times. This topic is
examined later in this section and in Sec. III.

It might be thought that the appearance of a torsion
tensor 7 would be rare for general space-times. Just the oppo-
site is the case. The vanishing of the torsion 7 has strict topo-
logical criteria,'® namely closed tetrad forms. This requires
M = R * (perhaps with some points deleted) or a necessarily
nontrivial H '(M ) cohomology group. Closed tetrad forms
then imply local flatness for (M, g) and vanishing torsion.

Choosing a global tetrad field to represent a spinor
structure induces the V connection and its # torsion as mani-
fold structures. In Ref. 10, it was shown that the 7 torsion
appears in the Klein—-Gordon equation of covariant Dirac
theory through the usual local-coordinate representation
7*(x) of the Dirac units. The torsion 7 couples naturally to
spin in the second-order equations. The dynamical Dirac,
Rarita-Schwinger, and other first-order spinor equations
are unaltered. They contain no torsion terms, which was
expected from the flat-R ¢ case.

The classical geometrical tetrad field K, (x) is used to
expand the metric as g{x) = 7,,K ~'“(x)® K ~'*(x), where
K ~'%(x) = w°(x) denotes the global tetrad one-forms. Thus
the metric satisfies the transport laws Vg =0 and Vg=0
and the tetrad one-forms also self-transport via V according
to VK 7 x)=0.

The explicit I" connection coefficients in local coordi-
nates'® are

I, =K4x9,K o “x).

The torsion 7=1I —1I'7, invariantly expressed as
7= K, ® dK ~'° vanishes only on locally flat space-times'°
for which each dual field may be taken to be closed
[dK —'%(x) = 0]. This is directly seen using the directional
derivative relation

Ve Ky — Vi K, =0=HK,,K,) + [K;, K, ],
which gives globally vanishing torsion if and only if the tet-
rad vector fields commute globally. In those cases, the tetrad
fields are expressible on a local-coordinate chart as simple
coordinate gradients. The dual one-forms would then all be
closed globally and local flatness follows.

Expressing the torsion in tetrad components identifies
the torsion as the tetrad Lie structure functions. Using the
Lie bracket [K,(x), K, (x)] = f 5, (x)K,(x) and an inner pro-
duct with K ~ “(x) gives that 7, (x) = f'Z, (x). The global van-
ishing of torsion 7 requires the global vanishing of the tetrad
Lie structure functions.

The connection V is related to the unique symmetric
Levi-Civita connection V by the local coordinate relation!®

rlta =f7va) +g#ig9(v%g)/i' (2’1)

947 J. Math. Phys., Vol. 26, No. 5, May 1985

Equation (2.1) is merely the necessary ECSK relation*!* for
any metric-compatible, torsional connection, namely
T'=T + 4, where the contorsion tensor 4 is a (1, 2) tensor
made up of the torsion plus a symmetrized torsion part.

The connections V and V are equal only when the tor-
sion'®is zero in Eq. (2.1). This requires the vanishing of Levi-
Civita curvature (since then R = R = 0) and again (M, g)
must be locally flat.

Equation (2.1) may be contracted to yield I'4, = 7";#
along with

gry, =g°lr';, +g%7, (2.2)
Several relations ("4, = r 4o and 74, = 0) in Ref. 10 were
separately incorrect. The correct combined relation is

fﬁa =an +T[:a’
with 7, #0 in general.

Again, the connection V is metric compatible'"'* since
Vg = 0. The I definition is an integrability condition for V.
Thus ¥ is curvature-free (R = 0) and hence is not a causal
connection.

But, surprisingly, the connection V enters physics
through spinor theories because Clifford units are needed.
For example, in Dirac theory, to form the generally invar-
iant vector field operator y#(x)d,,, the constant Dirac units
7“ are represented in a local coordinate chart via the expres-
sion ¥*(x) = K %(x)y”. The Dirac operator then takes the ele-
gant form

vHX)9, = ¥ KE(x)9, = VK, (%),
in the global set of 0-n bases defined by a global tetrad field.

The y*(x) satisfy the transport law V_y*(x) = O since
the tetrad fields all satisfy VX, = 0. In local coordinates this
reads

Vortx) =V K4y = @.K4 + T Kl =0. (2.3)

It is clear why the Dirac units should exhibit this behav-
ior. The Dirac 7 elements (and the entire algebra generated
from them) may be assigned to each point x € M since the
tangent bundle of the parallelizable manifold is trivially
M X R*. All 16 algebra basis elements are SO (3, 1) invar-
iant. They do not depend on the local tetrad basis K, (x) cho-
sen at any x € M. However, the ¥, represented in local coor-
dinate charts as y*(x) = K %(x)y”, express this constancy of
¥, a=1,2,3,4over Mviathe V transport law of Eq. (2.3).

Similarly, the Infeld-van der Waerden symbols ¢* and
o, are intrinsically defined relative to o-n frames. They are
assignable, as are the Dirac units, as constants over M. How-
ever, when these symbols are represented using local coordi-
nate charts, they are expressed as o0, (x) =0,K '%(x) and
o*(x) = 0°K %(x). Thus, as in the Dirac unit case, the con-
stancy of these symbols over M is expressed via the transport
laws ¥, o(x) =0and ﬁa 0,(x) = 0. In any o-n tetrad basis,
the basic first-order differential operators are o°K,(x)

= 0°K%;(x)d,, for spin-§ or 0°K 5(x)V,, for higher-rank spin-

ors. Since the tetrad field operators do not in general com-
mute, the second-order Klein-Gordon equations for arbi-
trary-rank spinor fields will contain torsion terms arising
from the tetrad commutators. Thus, both Dirac-type and
Penrose-type spinor equations will contain torsion terms at
the Klein—Gordon stage.

11,12
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It has been reported™* that S'> } spinor field equations
cannot be consistent except on restricted space-times such as
Einstein>® spaces or those with constant sectional (Riemann)
curvature.* It is notable that these results occur when two
standard assumptions are made. The first assumption is that
all coordinate derivatives d, should be replaced by Levi-
Civita covariant derivatives V,,, which is correct for spin-3, 3,
. . . spinor fields.!’

The second assumption is that the Clifford units or In-
feld-van der Waerden symbols'® always parallel transport
via the Levi—Civita V connection.>*¢ It has been shown'®
that (a) the integrable tetrad transport law V_y*(x) =0 is
appropriate for the constant Dirac units, etc., and (b) V=V
iff the space-time is parallelizable and locally flat.

If the Dirac units (or Infeld-van der Waerden symbols)
are assumed to Levi-Civita transport globally, thereby argu-
ing away the torsion terms in the Klein—-Gordon equation, it
is equivalent to assuming the integrability of the Levi~Civita
connection. For such cases the torsion is zero but the space-
times are locally flat and hardly very interesting. Actually,
the restriction claims** are not without a modicum of truth
since curvature-free, locally flat space-times are trivial ex-
amples of Einstein spaces of constant (zero) sectional curva-
ture.

Hence, we find that the usual inconsistency claims®*
are the result of assuming the Levi-Civita transport of the
Clifford units, etc., for spinor field equations. Many auth-
ors''™? have discussed the connection associated with o-n
tetrad fields. However, the V transport of the various alge-
braic units and the importance of that transport for spinor
field equations had not previously been reported.

lil. DIRAC AND RARITA-SCHWINGER EQUATIONS

The Dirac equation, expressed relative to a given global
o-n tetrad field X, (x),a =1, 2, 3, 4is

(V'K, (x) + impp(x) = H (x).

Here 9* are the constant Dirac matrices in any representa-
tion, ¥(x) is the (general scalar/Lorentz spinor) amplitude,
and H (x) is a source term. In a local coordinate chart, X, (x)
= K%(x)d, and y*K, (x) = y*(x)d, in analogy with the flat-
R * case. It should be noted that this is the usual curved-
space-time Dirac equation.'” The connection V does not en-
ter the first-order dynamical Dirac equation.
But, by operating with (y°K,(x) — im) and defining
(y°K, — im)H = S, the associated Klein-Gordon equation'®

@V, +m + 80T, 0,9 — (/20" (x)FL, duy =S

is obtained, where o**(x) = ( — i/2) [¥*{x), ¥*(x)]. The usu-
al Klein—-Gordon equation is reproduced along with two tor-
sion terms, one a trace term and another term coupling spin
to the torsion. In locally flat cases, both torsion terms vanish
as in the flat R case. The Lorentz covariance of the KG
equation is treated at the end of this section.

The Dirac amplitude #(x) is a cross section of the vector
bundle'® ;C*X O *(M) where G=D "> @ D© /2 The
spin-} Rarita-Schwinger amplitude ¢, (x) (with spinor index
suppressed is a cross section of the bundle ;C*X T (M)
X O *(M) which is subject to the subsidiary conditions
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v#(x)¥, (x) = 0 and g**(x)V,, ¢, (x) = O in local coordinates.
The first-order Rarita—Schwinger equation is then
x|V, +impy, =H,_,
where H, is a suitable source term.
Generating the associated Klein—-Gordon equation by
operating on Eq. (3.1) with (y*(x)V, — im) = D" and defin-
ing D "H = S we obtain

@V, V, +my + iV, VY, + (87 + io*(x))

(3.1)

X (Mg — T4V, ¢, =S,

Using Eq. (2.2) and the definition of 7, the Klein—~Gordon
equation becomes

@V, +m’i, — (i/2)0" (7, Vs¥a)

+ (i/40*" R L, ¥, + 875V, 0, =S,

Again, we see the spin-torsion coupling and the torsion-trace
terms (as for spin-4) along with the expected coupling of spin
and the curvature tensor R (of V). The torsion terms vanish
only in locally flat cases as in the spin-} case. We see that for
the Dirac case, the Rarita-Schwinger case, and for any
spinor wave equation of the first order, the tetrad connection
modifies the standard (inconsistent) Klein-Gordon equation
by the addition of torsion terms. The standard first-order
equations for fermion dynamics are unaltered in all cases.

A question of great importance is the Lorentz covar-
iance of the results obtained in this section. The first impres-
sion is a pessimistic one. Because no natural parallelization
exists in general, each o-n tetrad field choice would seem to
give a new Klein-Gordon equation with a new torsion tensor
for any given spin. This seems obvious because a change of
o-n tetrad field via a pointwise Lorentz transformation
K, (x)=A ;7 "x)K,(x) takes 7 = K, ®dK ~'*to a new tor-
sion tensor ¥ =K,®K "4+ A, "K,dAANK — .
However, the torsion terms in the above KG equations were
generated naturally by the transport laws for the Dirac gam-
mas. We must start with the Dirac operator and generate a
new KG equation. Due to their Lorentz invariance, the
Dirac units satisfy LA #y*L ~' = y#, where L is an element
of D!/>% @ D /3, The Dirac operator y*(x)d, relative to
another tetrad choice is simply Ky*(x)L ~! d, because the
tensor parts are contracted. The Dirac operator is purely
spinor in nature. Thus, when the KG equation is formed for
the Dirac or Rarita—Schwinger cases, only derivatives of the
L matrices will appear. These terms are absorbed in the stan-
dard way’ into the covariant derivative by defining the “spin
connection.” The torsion term then transforms as a spinor
under a change of tetrad field. This unexpected result is actu-
ally just the built-in spinor covariance, but tensor invariance,
of the Dirac operator, which does its own bookkeeping, al-
ways resulting in purely spinor Lorentz covariant equations.
Similar arguments?® give the same result for general spinors
based on the Infeld—van der Waerden symbols which satisfy
the Lorentz invariance relation LA [ '%0’L *T = o,, where
L and L * are elements of the D /> ® and D © 2 representa-
tions of SL(2, C). The Lorentz spinor and general scalar na-
ture of the operators 0°K;, V,, makes the KG torsion terms
Lorentz covariant as purely spinor quantities.
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IV. FREE-FIELD SOLUTIONS AND TORSION

It was shown'© that the torsion associated with a global
o-n tetrad K, (x), a = 1, 2, 3, 4 on a parallelizable space-time
is7=K, ®dK ~ ' since #, = K*d,K ;7 '*—3,K ') in
local coordmates It is clear that in order to have vanishing
torsion and V =V, the linear independence of the K, (x)
fields implies that all four tetrad one-forms must be closed,
namely dK ~'=0. Were all those one-forms exact, we
would have'® flat Lorentzian R * (perhaps with some points
deleted). Consequently, for vanishing torsion on a general
manifold, we must have at least one closed, inexact tetrad
one-form. The space-time manifold must then have a nontri-
vial cohomology group H '(M)#0.

Torsion 7 and curvature R both zero implies that (M, g)
is locally flat, which is consistent with the tetrad one-forms
being locally exact (i.e., closed). Many space-times are paral-
lelizable® but not locally flat. The Friedman—Robertson—
Walker (FRW) space-times with topologies R ' X R ? (open)
and R ' xS ? (closed) are all simply connected [7,(M) = 0]

which implies H'M)=0 in these cases. Similarly,
Schwarzschild (exterior) space-time has topology
R'X(R?— {0})som(M)=0and H'(M)=0. Torsion 7 is

then necessarily nonzero in these cases.
In the usual (7, 6, ¢, ct) coordinates, the torsion for the
exterior Schwarzschild case has the few nonzero compo-

nents Fi, = —7, =m /(¥ -2m’r), F,=-7,
=[1—(r/tr—2m")?/r,and 7; = — 7, =7, withm’
= Gm/c%.

In locally flat cases, very simple solutions exist for free-
field Klein—-Gordon, Dirac, Maxwell, etc., equations. The
vanishing of the tetrad torsion 7 gives V = V. Consequently,
tetrad vector fields are also V geodesic vector fields.

One may then cover M with an atlas of charts such that

M = U (V,) where each
J

¥i»a=1,2,3, 4 for each chart. The tetrad one-forms being
closed implies that the coordinate functions on each chart
may be chosen such that dy; = K ~'“ on each chart. Inlocal
coordinates, this is expressible as

V; is the open domain of coordinates

dy; =4,y dx* = K ;' dx*.

In the atlas U {yf, ¥} itself, d, = d/y; on each chart and

thusK ;' =15,‘1 . In the locally flat case, the tetrad forms are
harmonic since d(K ~'%) = O(closed) and *d *K —'* = 0(co-
closed) since coclosed implies V,, K4(x) = 0. Recall that lin-
ear combinations H (x) = k °K, (x), with constant coefficients
k*, satisfy V,H (x) = 0 in locally fiat cases.'® These vector
fields have a global casual nature since g(H, H) = n(k, k) is
constant over M.

Plane-wave functions are then of the form
P(x) = explik,y}(x)) on each chart domain V;. See Ref. 21
for plane-wave space-times.

Note that these functions are maps from R * X Minto C'!
rather than the topological exponential map. Clearly,

dP (x) = ik, dy;(x)P (x)oneachchart V. Inlocal coordinates,
dP(x) = ik, 8,y{(x)dx" P (x) = iH (x)P (x),
where H (x) = kK ~"(x)isdualto H (x) = k °K,,(x). Clearly
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d (dP(x)) = 0 implies dH (x) =
The Hodge dual three-form =#dP(x) is *dP (x)

—iP(x)eH(x) and then dsdP(x)=idP(x)A +H(x)
+ iP(x)d «H {x) = idP (x)}A «H (x) sinced «H (x) = O (equiv-
alently V, K4 =0= v K5)

Inlocal coordinates, we may write the above resultsina
form very much like special relativity. We have

V,P(x)=09,Px)=ik,K  “x)Px),
since P (x) is a scalar, and
V,V,P(x)=ik,K [ "x).,Px)
—koky K ;K S P(x)P (x).
But, K ' =0if V= ¥V; thus we have
g*V,V, P(x)= —nlk, k)P (x).
We may then solve various free-field equations utilizing

these P (x) functions.
The scalar Klein—-Gordon equation is trivially solved by

f(x) = gP(x), where g € C ' and (k, k ) = m? for the particle
in question. Clearly, H {x) = k °K , (x) is a null vector field if
m?=0.

The free Dirac equation (y°K,(x)+ im)(x)=0 is
solved by ¥{x) = y(k )P (x) with y (x) the usual Dirac polariza-
tion vector in C* satisfying (¥°k, + m) y (k) = O from the
Dirac equation above. The Klein—-Gordon equation gives
nik, k) = m?, as expected.

Maxwell free-field equations are similarly solved with
solutions for the potential one-form A (x) given by A(x)

=4 (k, x)P (x), where 4 k, x) = ,,(k JK ~'*(x) is a closed
one-form since 4 »(k ) is a constant Lorentz four-vector para-
metrized by k. The field two-form is F=d4 = (dA )P
— AAdP = — AAdP. Trivially, ddF = 0, which gives two
of Maxwell’s equations.

The remaining free-field Maxwell equations result from
*d »F = 0, Written out in local coordinates, these equations
are V, F*¥ = 0. The contravariant field tensor F*” is expli-
citly

F* = —id*%k K"K — K K*)P(x).

We have (with V = V) that V,K % =0, V,K % =0, etc. This
yields

V F* = zﬁ *h K LK L — KK )ik K 7P
= ({4, kYK — ik, k) be)P
A free-field solution is obtained if we require the flat-R * con-
ditions 9{4, k) = n(k, k) = 0. The solution obtained is then
based, as expected on the global, null wave-number field
H(x) =k, K “x).

Analogous solutions to the free Rarita—Schwinger
equation are also easily constructed by the methods de-
scribed above.

V. CONCLUSIONS

The connection V associated with a global o-n tetrad
field has been recognized as metric compatible!'? for some
time. Its appearance in the physical setting of Dirac theory
has occured only recently.'® This work was based strongly
on the Geroch parallelizability criterion.

The trivial nature of the tangent, cotangent, linear
frame, and o-n frame bundles of parallelizable space-times is

J. R. Urani and F. J. Kutchko 949



very useful. Constant nonzero cross sections can be con-
structed for the tangent bundle, for example. The set of con-
stant Dirac ¢° units may be assigned globally for this reason.
Because the ¥ and o elements (which are used in all spinor
theories) are globally constant and are thus independent of
the Levi—-Civita geodesic spray, the  and o elements must
transport using V rather than the V of Levi-Civita. Conse-
quently, the inconsistencies in higher spin Klein—-Gordon
equations®** result due to the commonly assumed Levi-Ci-
vita transport of the Dirac and Infeld—van der Waerden sym-
bols.

Using the purely spinor nature of the differential opera-
tors in spinor theories, it was also possible to show the rather
subtle Lorentz covariance of the modified Klein~Gordon
equations containing torsion.

Finally, a particularly simple plane-wave solution form
was found for free-field equations on locally-flat space-times
for which tetrad torsion necessarily vanishes and the two
covariant derivatives coincide.
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If a d-dimensional integral involves an integrand of the functional form F( f,(x,) + f5{x,} + ),
then one can introduce an integral transform (Fourier or Laplace or variants on those) which
allows all the integrals over the coordinates x; to factor. Thus a d-dimensional integral is reduced
to a one-dimensional integral over the transform variable. This is shown to be a very powerful and
practical numerical approach to a number of problems of interest. Among the examples studied is
the computation of the volume of phase space for an arbitrary collection of relativistic particles.
One important aspect of the approach involves numerical integration along various contours in

the complex plane.

I. INTRODUCTION

If an accurate numerical evaluation of a one-dimension-
al integral requires » points on a lattice, then, according to
conventional wisdom, one will require n* lattice points to
evaluate a similar d-dimensional integral. This number n?
grows so rapidly as d increases that such a direct approach
becomes prohibitive. Thus there has been great interest in
Monte Carlo and related methods that appear to be indepen-
dent of the number of dimensions. This paper reports an
attempt to turn against this tide and to find some analytically
based schemes for multidimensional integration that have
high accuracy and systematic improvement with consider-
ably less than n? operations.

In Sec. I1, I consider integrals that involve a function (or
a few functions) of the form F( fi(x,) + f5(x5) + - + f3(x4)).
An integral transform is used to reduce the d-dimensional
integral to a one-dimensional (or a few-dimensional) integral
over the transform variable(s). An interesting aspect of this
method is that one often ends up integrating numerically
over some contour in the complex plane; and some examples
show that this can be done quite nicely. This method is ap-
plied to computation of the relativistically invariant phase
space volume for any number of particles with arbitrary
masses and some total energy specified in Sec. III.

In Sec. IV, I consider integrands F whose argument is a
product, rather than a sum, of functions of the different var-
iables. Here a Mellin transform does the trick; and some
further examples are given.

The philosophy guiding this work is not that one should
expect a universal rule good for all types of functions. Rath-
er, the aim is to develop a variety of techniques, each one
powerful for certain classes of functions. Then, either
through analysis or by trial and error, one can seek the pro-
cedure most efficient for any given problem. While the parti-
cular type of function studied in this paper may seem very
special, it appears to be the most commonly encountered in
studies of multidimensional integrals and is familiar in many
physics problems.

In the following paper’ two very different new tech-
niques for multidimensional integration are presented.

li. THE TRANSFORM METHOD

Consider integrals of the form

I= (fI g,.(x,.)dx,-) F(iglfi(xi)) . (1)

i=1
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Assume that we can find a suitable integral transform for the
function F:

Fls) = J do F (o)e™@, 2)
then the original integral becomes

I= | doFo) f[ w,(0), (3)
where -

wio) = [ gbckdx ™ (@

Thus we have replaced a d-dimensional integral by (d + 1)
one-dimensional integrals. This implies a great economy:
from n? to n’d operations.

The choice of the integral representation (2) will depend
on the nature of the function F and the range of the variables.
Some examples:

C + i
0(s)sp"l=f iig'ﬂp_)esa’ P>O; (5)
C—iw 2 OF
£ -1
s—P=J- do e %, p>0, 5>0. (6)
o r'(p)

These can be used as in the following d-dimensional inte-
grals:

d oo a1 — B, d p—1
(0 [ o) (Emr)
_ J-C+ioo£p(p) eya- d r(a')

- —, 0<C<5
C_iw 2 O i=1 (B — o)™

7

and

(0 [ (v

(7, 0P (1"
- | T D( a0 ”) )

After one has chosen an integral transform the final
task is to select a good contour and to have a reliable scheme
for numerical integration. It is well known that one can
make this last task terribly hard by choosing an unfortunate
contour for integration—one where the function is very
large and rapidly oscillating so that numerical accuracy is
rapidly lost. However, (as is perhaps less well known) con-
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tour integration in the complex plane can also be a very easy
and well-behaved problem.

For a test I chose the representation of the gamma func-
tion given in (5):

C + i o
1 . J d_". £ 9)
I(p) C—iw 2mi OF

If you look at the integrand along the positive real axis, you
see that it has a minimum at o = p. Furthermore, if o can go
to infinity in the left half-plane, then the exponential will
decay rapidly. So I chose the contour

o=p+1—coshx+isinhx, — cw<x<ew. {(10)

Finally, for the infinite integration over x, I use the simple
rule

f(x)dx==h S Fewotnh) (11)

which w1ll generally have an error decreasing exponentially
fast with decreasing A, for analytic functions f (see Ref. 2).
Results of this computation are given in Table I; they look
quite satisfactory. I redid the computation with the alterna-
tive contour

o=p+isinhx (12)

and found that the results were about the same for large
values of p but for smaller p the integration required more
points to be taken for the same accuracy. (For p = 2 it did not
work at all.) This carries the interesting lesson that some
problems may get easier as the number of dimensions gets
larger: Note the increasing number of powers of ¢ in the
denominators of (7) and (8) as d increases; and it is this large
negative exponent that helps make the final integral con-
verge rapidly in a small domain.

TABLE 1. Numerical integration for the gamma function I"( p). Results
from the equation 1/I"( p) = §* i (do/2mi)e°/a?), with integration along
the contour o = p + 1 — cosh x + i sinh x are given. The trapezoidal rule
was used for integration in x, terminating when the added terms were less
than one part in 10°. The machine was accurate to six decimal figures of
arithmetic. The interval 4 was started at 1.0 and then successively halved.
The numbers in parentheses give the number of integration points used at
each value of A. This could have been reduced by half by using the symmetry
in x. The dot under each number indicates the place after which it ceases to
be accurate.

p=2 p=16 X101
0.993299 (9) 0.111804 (9)
1000461 (15) 0.i28573 (17)
1000002 {29) 0.130805 (30)
0.130767 (57)
p=4 p=32 X107
6.57209 (9) 1.851694 (9)
6.00662 (1) 0.918359 (17)
6.00000 (27) 0.820985 (33)
0.822279 (63)
p=8 p=64 X 10788
4605.07 (9) 0.145196 (11)
4985.79 (1) 0.208250 (19)
5039.94 (28) 0.198967 (37)
5040.00 (53) 0198261 (71)
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Sometimes this integral transform technique allows one
to express a complicated-looking multidimensional integral
in closed form. For example, in Eq. (7), if p should be an
integer or if the numbers a; are integers, then one can write
the answer in terms of residues at the poles at o =0 or
o =B, (for y = 0.) A large number of multidimensional inte-
grals of this general type have been evaluated by Fichten-
holz? using more laborious techniques. I prefer to stress the
practicality of numerical integration as illustrated here rath-
er than struggling for “closed form” answers.

As an illustration of this last remark consider the inte-

N
f dx 2 T[ SBP% (13)

1

which was derived by Cerulus and Hagedorn* by an integral
transform from some other multidimensional integral.
Those authors showed how to evaluate this algebraically in
2% operations by means of residues. (Sometimes this in-
volves much cancellation between nearly equal terms. The
entire integral vanishes if any one p exceeds the sum of the
others.) I tried integrating (13} directly, using the rule (11),
and found that it worked excellently, except for very small
N.

Ill. PHASE SPACE INTEGRAL

I have applied this method to an interesting and diffi-
cult problem which has long concerned high-energy physi-
cists: calculating the volume of phase space for NV particles
with total energy E. The relativistically invariant integral is
expressed in momentum variables as

Ry = (H, 2El)63(zp‘)5(ZE"‘E)’(14)

where
E, = + (p} + m})'"~. (15)

I start by introducing the Fourier integral representation of
the Dirac delta functions,

SPWIE) = "(2")"’ oPre—iE (16)

and then we have the separate integrals over each momen-
tum variable which result in the modified Bessel function of
order 1:

d 3]7 i —iEy m
LT = dr————= K (m{X* — 17).
2E, (x* — %)

(17)

From (17) we see that the integration variable f may be taken
into the lower half of the complex plane; this means that the
square root expression (x> — ¢ 2)"/? always has a positive real
part. Now we introduce a new integration variable o as fol-
lows. Writing for shorthand

N 2mm

Ho)= ] ——Kilm,0), (18)
i=1
the integral (14) is equal to

d3x dt J‘C““’ io/m .

= do Il (o) ————— e+,
v 2m)* Jo-iw ( )02—x2+12

(19)
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where C is a small positive constant so that the contour runs
to the right of the singularity at o = 0 and to the left of the
poles at o = (x> — ¢ 2)!/2, Now the integrals over x and ¢ can
be carried out, giving us another Bessel function; and the
final result is

C+ i »
Ry= — f da%!,(aE)II(a). (20)

47 Jo_ i

Thus the 3N-[or (3N-4)-] dimensional integral (14) is trans-
formed into a single integral (20). A few analytic remarks can
be made before proceeding to discuss the numerical evalua-
tion of this integral.

The contour of integration may be moved about since
now the only singularity of the integrand occurs at the ori-
gin. If we move far to the right, the Bessel functions can be
replaced by their asymptotic forms and we have the simple
exponential behavior

N
explE —M): M= Y m,. (21)
i=1
Thus if E is less than M, the integral is seen to vanish, which
is physically correct. If the masses of the particles are all
zero, we have

m, 1
—K,\(m, =, 22
and the integral becomes
Ryl0) = - [ do LiloE) @m)" 23
o A7 Jo—iw E N2

which can be evaluated in terms of the pole at the origin,
yielding the well-known result

Ry(0) = (w/2)N 'E*~*/(N — 1N - 2)\. (24)
The nonrelativistic limit is gotten by taking the masses of the
particles large and using the asymptotic formulas for the
Bessel functions:

(m; /oK (m,0)—(m,7/20%) %~ ™, (25)

I,(0E }—~{1/27E0)"/?%e°~, (26)

N 1
172 3/2)N — 1)»{1/2)(N — 3}
RN—>(“m, )——3/217" 2

i=1

1 C + i
- do—S
X 2ﬂ'i4[,‘—ieo AN =17

e(E — mjo

(27)

and the final integral is given by (5). Hybrid closed forms,
where some of the particles are considered ultrarelativistic
according to (22) and the rest are treated nonrelativistically
according to (25) and (26), can also be obtained.As far asI am
aware, such closed form results for (14) are new.’

For numerical evaluation of (20) we first choose the
contour, following the earlier experience with the similar,
but much simpler integral (9). Along the real axis, the inte-
grand in (20) grows large at both small o and large o; so we
shall choose the contour through the point o = C where the
integrand has its minimum. Upper and lower bounds for C
can be well estimated by using the approximation (26) for the
function 7, and either of the approximations (22) or (25) for
the functions K:

C=[@2—3,IN—3/E—M), (28)
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where
0<f<l.

In my program I let the machine choose the minimum point
after three evaluations of the integrand: at the two extremes
of (28) and at their midpoint.

Next is the question of how to evaluate the Bessel func-
tions occurring in the integrand (20). I used the polynomial
approximations for I, and K, given by Abramowitz and Ste-
gun.® These have an advertised accuracy of about one part in
107 or better for real arguments; one could worry about their
accuracy for the complex arguments needed in our integral.
However, I was able to convince myself that this procedure
was adequate for the present uses. Finally, there is the task of
the actual numerical integration. I used the simple rule (11)
after a change of variables

o=C(1 + ixe"), (29)

which helps the integrand to decrease rapidly. Working to
an accuracy of one part in 10* for the final answer I found
that as few as 15 points in the numerical integration were
required for large values of ¥ (20 or more); about 40 points
were needed at N = 6 and about 160 at N = 3. The program
did not work for N = 2. I have ideas about how to change the
contour so that this could be improved but it hardly seemed
worthwhile. Small-¥ results can be calculated directly from
{14) much more simply. The hard problem is for large N and
here my program worked beautifully.

A few checks on the program are available. The zero-
mass result (24) is one. The case of all but one particle having
mass zero is another’; and the case of three particles of equal
mass m is given by the integral [gotten directly from (14)]

2(1 — 31 + y)? L dx

X [x(l A0 =) = (1 =30 + e ]
47 +(1=3p)1 + vix

(30)
where
v=m/E,

and this is normalized to unity at y = 0.

A production run for ten values of N (from N =3 to
N = 30)and nine values of M /E (from 0t00.5)took about 10s
of computer time and cost just over one dollar. This was for
the case of all masses equal so that each Bessel function X
was evaluated only once at each integration point. In general
the time required will be proportional to the number of dif-
ferent masses; but this should still be far far less than the time
for any other known method at large N.

A summary of the calculated results (for N equal mass
particles) is

pn = Ry(m)/Ry(0)=pre= V=2,

: (31)

pr=(1—(M/EP)"?, M=Nm,
and the value of 4 is given by

A=(M/EY In(E/MV?, (32)
for small values of M /E (up to 0.1) and increases to about
twice this value at M /E = 0.5.
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IV. ANOTHER TRANSFORM USED

Multidimensional integrals that have the particular
form (1) might be thought of as being terribly special. Yet, if
one looks at the leading textbook on numerical integration®
this is the most common form of examples shown. Out of a
total of 26 numerical examples given by Davis and Ra-
binowitz for integrals in more than two dimensions, 16 are of
the form (1); and all but one of the remaining examples are of
the alternate form:

7= (11 st ax,) F (T £ (33)

i=1
The change from a sum to a product in the argument of the
function F leads us to use a Mellin transform in order to
factorize the dependence on the separate coordinates x;. The
transform is

C + i ~
Fit)= f ‘—ig.t ~?F(o), (34)
Cmiw 2Mi
and its inverse is
Flo)= f dtF(t)te—. (35)
Q
This leads to the single integral for J, analogous to (3),
I= [Lop 1 wio) (36)
2w i=1
where
wio)= [ dx ) i) = )

One example of reduction of a d-dimensional integral of
this form is

(ff [ =) (11 )

nl/t]4-!

1
i
= dttiF(t 38
[ areerie aan (38)
A second example is
d ® d
dx; e—’") ex (—b x,.)
1I=Il 0 . p iDl
- fd—"',r(a)rd(l —op -, (39)
27i

which involves gamma functions, entering as the Mellin
transform of the exponential function. The contour of inte-
gration here is parallel to the imaginary axis, passing
between the poles at o = 0 and o = 1. Numerical evaluation
of (39) was carried out very successfully, following the gen-
eral advice given in Sec. II. Gamma functions for complex
argument are readily computed by starting with the general
asymptotic expansion for moderately large argument. For
d = 10 and various values of b (2,10,100,2/,10/,100/) I was
able to obtain six-figure accuracy with under 100 integration
points.
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Other examples, both analytical and numerical, were
studied but need not be recorded here.

V. FURTHER REMARKS

The general technique described here may be of particu-
lar practical use in some statistical problems. If one has sev-
eral independent random variables x;, distributed according
to probability functions g; (x; ), then an integral of the form (1)
with F = §(R — 2?_  x;) gives the probability distribution
for the sum of the variables to have the value R. Some pre-
vious work on such problems, it appears, could benefit from
the present technique.’

In conclusion I should note some possible extensions of
the method of integral transforms described above. If the
multidimensional integral has not just one function F of the
form shown in (1) but a few of them in product, then one
could carry out an integral transform (2) for each of them.
The resulting product integral in the transform variables
might still be more tractable by direct integration than was
the original integral. .

If an analytic expression for the transform Fis not avail-
able, one might evaluate this also by numerical integration of
the inverse transform of F. Similarly, if the integrals w; of (4)
do not give nice closed form answers, numerical integration
may be used on these one-dimensional integrals. Thus, for
the Bessel functions of complex argument needed in the
phase space problem, one could get them directly by numeri-
cal integration from the integral representations for these
Bessel functions. (I have tried this and it works well.)

Finally, if the function F is of the form F(f,(x;.x,)

+ fi4{x3,%,4) + ), there is an obvious generalization of the
method that might be useful.
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Two new techniques are presented that appear to be useful in obtaining accurate numerical values
for the numerical integration of fairly smooth functions in many dimensions. Both methods start
with the idea of a mesh containing » points laid out in each of the 4 dimensions, then seek
strategies that use far less than all n¢ points in some systematically improved sequence of

approximations.

I. EXTRAPOLATION METHOD

Suppose we have some prescription for the numerical
integration of a function f(x) of one variable:

n

Zw}-f(xj)=ff(x)dx+E(n). (1)

i=1
A high-accuracy prescription (quadrature rule) is the set of
points x; and weights w; such that the error E (») is a small
and rapidly decreasing function of #, the number of mesh
points used.

Now suppose we want to integrate a function
F(x,,x;,...,x;) = F(x) over the d-dimensional cube. The di-
rect product technique would be to use the rule (1) d timeﬁ

n n, g
3 e Y wy Wy e F (X5 X, 5000%;, )
i=ti=1 ja=1
=S5 (n,,n3,...05) =S (n). (2)

This computation will require a large amount of effort, since
the total number of evaluations involved is

N=T]n». (3)

To see the form of the error, apply the relation (1) d times to
F(x):

S(n) = fffd % F(x)+ [E,(n) +E,(n,) ++E;(ny)] + higher-order terms, 4)

where the higher-order terms would be of the form of pro-
ducts of two or more “small” terms. This is the main result:
If the errors are indeed small in each separate dimension, the
leading (first-order) error term for the multidimensional
computation is additive in contribution from each dimen-
sion,

Upon this observation we build a simple technique for
eliminating the first-order errors. First, compute S for a giv-
en set of numbers n;; then, one at a time, increase the number
of mesh points used in a single dimension while keeping all
the others fixed, and compute

D=8 (n;, nypesfiyyesfty) — S (M, NyseeisBty By ),

i=1,d. {5)
Then, from (4), we have
D, =FE;(n;) — E;(n}); (6)

and, if n; is substantially larger than »,, we may take

D, =E;(n;), (7
because each E (n) is assumed to decrease very rapidly as
increases. Thus we computationally determine the first-or-
der error terms and we subtract these terms out from the

original computation to get the improved approximation for
the integral I of F (x):

d
i=1

The saving in computer time by this technique may be con-
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r
siderable: If N, is the number of evaluations needed to com-
pute the original S (n), and if we take each n; = 2n,, then the
additional computing effort for the result (8) is 2dN,; this
may be compared to 2¢ N, which is the amount of effort
needed if one doubled all the n, at once.

This result is an extension of the basic idea in Richard-
son extrapolation, except that we do not assert a known form
for the error function E (n) but only rely upon it being rapidly
decreasing.

For numerical examples I took two six-dimensional in-
tegrals of complicated form from the book by Davis and
Rabinowitz':

F| = x,%,%,%,x X [10g(X %, /% X 5X6))%,

integrated over the cube (0,16, (9a)
F, = 3c08(3xx,%3x4x5(1 — x¢) + 1)
integrated over the cube ( — 1,1)5. (9b)

The points x; and weights w; used were those tabulated for
Gauss-Legendre numerical quadrature.

Computed results are displayed in Table I. The column
headed “Mesh” gives the set of numbers »; used for the origi-
nal S (n) (25, 35, etc.)in each block, followed by the increment-
al sets (n? — ! n’) used. The column headed “Number” counts
the number of function evaluations needed at each stage of
the computation. (In the actual work these numbers were
much reduced because of the permutation symmetry of the
integrands, but that is not a general feature of the present
method.) The columns headed “Error” give the fractional
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TABLE I. Numerical results for the six-dimensional integrals (9a) and (9b)
using Gauss-Legendre quadrature rules plus the extrapolation technique

{8).

Mesh Error — F, Number Error — F,
2° 0.16 64 0.002 9

2%4 0.028 768 0.0021

2% 0.0085 1152

2°8 0.0040 1536

2510 0.0024 1920

36 0.060 729 0.000 27

3% 0.0076 8736 0.000 064

3°8 0.0031 11 664

310 0.0015 14 580

4¢ 0.028 4096 0.000014

4% 0.0077 36 864 0.000 000 81
4°8 0.0030 49 152 0.000 000 83
4°10 0.0014 61 440

5¢ 0.014 15 625 0.000000 56 .
5°8 25 000 0.000 000 006 9
6° 0.0076* 46 656 0.000 000 01
8¢ 0.0031* 262 144

*From R. Cranley and T. N. L. Patterson, Numer. Math. 16, 70 (1970).

error in the numerical value of the integral (for the functions
F| and F,) computed.

Looking first at the results for the function F,, we see
that overall the error is not very small and decreases rather
slowly: for example, look only at the sequence »°. This is
doubtless due to the logarithmic singularity in the integrand,
something which the chosen quadrature rule is ill prepared
to accommodate. Yet, given that overall difficulty, the pres-
ent scheme is seen to be very successful at getting higher
accuracy with fewer number of mesh points used: compare
the accuracy at 2310 (1,920 + 64 mesh points) with that at 8%
(262,144 mesh points.) There is a cost saving here of two
orders of magnitude for the same result.

When we turn to the results for F, things are different.
The overall accuracy is better and the convergence more
rapid. This may be attributed to the analytic character of the
function F,. The improvements gained by the present extra-
polation technique start out as nil (in the topmost block) but
then increase rapidly, reaching almost two orders of accura-
cy improvement (in the fourth block) at a cost of less than
twice the starting number of mesh points.

I do not have a general theory to predict when this tech-
nique will work well or how best to implement it strategical-
ly. It does appear to be quite promising, however, as a tech-
nique which one can readily experiment with, using
systematic increases in the numbers # to show whether the
convergence seems to be good or poor.

Il. FACTORIZATION METHOD

Suppose the function F(x) were given as a product of
factors, each involving only a single coordinate,

Si (X0 (%2)Sa (%a); (10)
then the d-dimensional integral of F would be simply the
product of d one-dimensional integrals, each one of which
could be evaluated by some numerical quadrature rule such
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as (1). The total cost would be proportional to nd rather than
the much larger number n¢.

Suppose that F(x) may be well approximated by a fac-
torized form (10) but the individual functions f;(x;) are not
known. Then one may construct these functions as follows.
Choose some reference point (node) y = (y,, y,,...,y4), such
that F(y) is nonzero. Now tabulate the values of F walking
out from this node along each one of the coordinate axes:

f;'(xj) =F(y1’y2!""yi—l’xj’yi+l:"'!yd)/F(y):
j=Ln,

(11)
where we have chosen a normalization for the factor func-
tions f; such that they are equal to 1 at the node, and the
points x; would be chosen to fit the quadrature rule (1) being
used. We have thus constructed the aproximation

d
F(x)=Gx)=F [[fi(x) (12)
i=1
and the integration follows easily.

Now, to develop a generally useful method, we need to
invent a sequence of approximations, like (12), such that we
may approach closer and closer to the given function F.
From the discussion above it is clear that we have the free-
dom of choice of the node point y from which the construc-
tion (11) follows.

A first strategy is to take a sequence of nodes y, , k = 1,
2, 3,..., and then construct a sequence of product functions
G, (x), defined by (11) and (12), where G, is built from the
original function F, G, is built from the residual function
F — G,, G, is built from F — G, — G,, etc. This procedure
was tried on the two six-dimensional integrals (9a) and (9b);
the results were very poor. Probably what is happening is
this: At the k th stage one is fitting exactly at the point y, and
on the lines passing through this point but at the same time
one is messing up the fit achieved at the previous node points
and their lines. Thus the error can just bounce around from
one region to another without being reduced.

A second strategy involved constructing a set of ap-
proximations G, (x), each constructed to fit the original func-
tion F'(x) at the point y, , independent of the others

G, (x) =F(yk)f[f,l‘(x,.), k=1.2,... (13)

Then take a linear combination of these G, to minimize the
expression

;[F(Yk) —ZCIGI(Yk)]Z' (14)

This was also tried on the same two functions (9a) and (9b) for
five points; and the results were even worse than with the
first strategy.

A third strategy involved a more complicated “cluster
decomposition™:

Fx)=FW[[fi(x) + T HE), (%%,

Hh<h
X H h§2)(xi) + 2 Hi(:l?z,is (xi,%:,0%,)
¥, i <i<iy
X [[ A& )+ (15)
ity iy
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Here only a single node point y is used; the functions H ®,
H ™, etc., span larger-dimensional subspaces and are defined
to vanish when any of their arguments are on the lines pass-
ing through y. This method was tried, through third order,
on the same two functions (9a) and (9b) and the results were
unsatisfactory once again.

A fourth strategy works the other way: rather than
building up correlations between the coordinates from the
uncorrelated product (10), we start by taking the full d-di-
mensional space and decomposing it into a product of two
subspaces

X = (X;,X3 ), (16)

where d, (the dimension of x,) and d, (the dimension of x,)
add up to d. The original function F is represented by

F(x)=F(x,,X,) =ZG{C(X1 )G;‘(xz)‘ (17)
K

This arrangement has a special property, which was first
noticed to be true in the first strategy above only for the case
d = 2. There is a freedom of redefinition of the functions G
which leaves F unchanged:

GGk + AGY, GY¥ -G} — AGH, {18)
for any number 4. With this, one can choose a series of node
points

Y = (y1,5)s
and require

GY(y¥)=G5 (y5)=0, forallk’'>k. (19)
This means that we can carry out the sequential fitting de-
scribed as the “first strategy” to evaluate the functions G*
[Eq. (17)). The new advantage, from (19), is the fact that
fitting at the kX thnode y* will not disturb the previous fittings
obtained at other nodes. The price paid for this advantage is
that each G function must be evaluated at a large number of
points. Still, the total number of evaluations, n* 4+ nd’, for
each point y* can be significantly less than the full number of
mesh points n% * %, Some experiments were carried out us-
ing this method. The function (9a) yielded very good results
after three node points; the function (9b) gave only fair re-
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sults with up to six node points. A chief advantage of this
method appears to be that the results tend to converge rela-
tively smoothly; while the previous strategies would often
give results that jumped around irregulary.

Obviously, the approach of this fourth strategy could be
carried further: each subspace x, and x, could be subdivided
into smaller subspaces with consequent savings in the num-
ber of evaluations needed.

It is not clear to me when these various strategies will
work well and when they will fail. What are the characteris-
tics of the function F which suggest that one or another tech-
nique will be most successful? What is the best way to choose
a sequence of node points y* ? Perhaps some later analysis or
accumulation of experience may shed light on these ques-
tions. For the present I believe it is useful to have a variety of
strategies which one may simply try out when an expensive
multidimensional integral confronts one.

Iil. SUMMARY

Two new methods have been presented for trying to
deal with multidimensional integrals in systematic manners
that allow one to judge the accuracy in terms of experimental
observations of how the computer outputs converge. The
first method is based upon a simple analysis of the error
terms when high-accuracy numerical quadrature rules are
used. The second method has a geometric conception, with
the function being fitted along sets of lines passing through
selected node points in the multidimensional space. Several
strategies within this second method have been described,
with a success rate (at least for the rather difficult test prob-
lems studied here) that calls for considerable further work
before one would be tempted to market this second method.
The numerical success of the first method, on the other
hand, is quite encouraging; and the first method is, further-
more, simpler to understand and to implement.

'P. J. Davis and P. Rabinowitz, Methods of Numerical Integration (Aca-
demic, New York, 1975). Chapter 5 deals with multidimensional integrals.
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A structural extension of the gravitational field is attempted in reference to the theory of Finsler
spaces: The vector y is attached to each point x as the internal variable and the intrinsic behavior of

y is reflected in the whole spatial structure.

I. INTRODUCTION

It goes without saying that the gravitational field in
Einstein’s sense! has a (four-dimensional) Riemannian struc-
ture, which is wholly dominated by the Riemannian metric
Y tx) (6,4 = 1,2,3,4). On the other hand, as is well known,
several kinds of structural extensions of Einstein’s gravita-
tional field! have been investigated, such as Brans-Dicke
theory,? Einstein—Cartan theory,> Weyl-Dirac theory with
torsion,* etc. In these theories, such “non”-Riemannian
quantities as (conformal) scalar, torsion, etc. have been intro-
duced, besides y,, (x), at the stage of metric or connection.
However, these “non”-Riemannian fields may be regarded
as “local” in the sense of Yukawa’s nonlocal field theory,’
because only the point x( = x*; x = 1,2,3,4) is adopted as the
independent variable. Therefore, if some new independent
variable is attached to each point, then a new “non”-Rie-
mannian and “nonlocal” gravitational field can be realized.®
This explains our standpoint that if we penetrate into this
more microscopically than in Einstein’s sense, then we may
conjecture that the resulting microgravitational field in our
sense does not necessarily remain Riemannian, but comes to
have a “non”-Riemannian structure due to some microde-
grees of freedom. So, along this line, we shall choose, in this
paper, the vector y as such independent variable and consid-
er a Finslerian generalization of the gravitational field. In
particular, the intrinsic behavior of the internal variable (y)
will be geometrically investigated in detail. By the way, the
Riemannian structure may be regarded as “point spacelike,”
“macroscopic,” and “local,” while the Finsler structure may
be regarded as “line-element spacelike,” “microscopic,” and
“nonlocal.”

Il. ON THE FINSLERIAN STRUCTURE

The Finslerian nonlocalization can be realized by an-
nexing the vector y to each point x as the internal variable.®
The Finslerian structure itself is, of course, influenced by the
intrinsic behavior of the internal variable y, so that it is neces-
sary to treat equally those two fields existing around x: One
is the external {x) field spanned by points {x} and the other is
the internal (y) field spanned by vectors {y}. The former is
nothing else than the Einstein’s gravitational field with the
(four-dimensional) Riemannian structure, while the latter
may be compared to the so-called internal space associated
with each point, which has, in general, a (four-dimensional)

* Postal address.
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Riemannian structure, although the internal space is pre-
mised to be flat in most physical problems. [The case of the
(v) field being flat will also be considered below. See Sec. I11.]
Therefore, for our purpose in this paper, we must first con-
sider a “unification” between the (x) and (y) fields and then
construct a Finslerian metric g, (x,y) by unifying the Rie-
mannian metric ¥;,(x) of the (x) field and the Riemannian
metric A;(y) of the (y) field. [If the (y) field is flat, then A, (y)
reduces to the Minkowskian metric.] It should be remarked
here that in order to distinguish the physical function expli-
citly, the Greek indices xA,...( = 1,2,3,4) are used for the
external quantities such as y*.,g,,, etc., while the Latin in-
dices i, j,...[ = 1,2,3,4) are used for the internal quantities
such as y/, A, etc.

So, we shall consider our unification as follows: Within
the framework of the theory of Finsler spaces,’ the tangent
space at the point x { = fixed) is a (four-dimensional) Rie-
mannian space spanned by tangent vectors such as {y} and is
governed by its Riemannian metric such as h;(y), where the
system (i) is chosen properly. And it is known’ that a Finsler
metric such as 4, (x,y) can be made locally not to depend on
x [i.e., A, (x,y}—h;(v})] under suitable conditions, where the
system (i) must be chosen properly. Therefore, in our case,
although the (y) field is not necessarily regarded as the tan-
gent space, the system (i) of y’ and ,(y) may be likened to the
above-mentioned system (/). Of course, the system (x} is a
general one. Then, the internal quantities y' and k; are
brought to the external quantities y* and 4, through the
following mapping relations:

V= eflxp,

hac(x,y) = €} (x)er(x)h; (v), (2.1)
where the quantity e denotes physically the mapping opera-
tor and resembles geometrically the coordinate transforma-
tion matrix. [If the (y) field is flat, then e becomes a function
of (x,y), in order to introduce the Finslerian metric 4, (x,y) in
the form of (2.1).] By (2.1), the (y) field is embedded in the (x)
field, so that in this sense, (2.1) may be considered our unifi-
cation process of the (x) and (y) fields. This unification pro-
cess is supported by our convention that on the side of the
gravitational field, we adhere to the dimension number 4 and
treat or observe only those quantities with Greek indices
alone such as g,,.,.F'5,, etc., not those quantities with mixed
indices or Latin indices alone such as g;,, F%,,h;, C}, etc.
[Therefore, our unification cannot be treated within the the-
ory of vector bundles (cf. Ref. 8).] In the following, the pro-
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cess (2.1) will be called the e mapping. Of course, the intrinsic
behavior of y in the (y) field is reflected in the (x) field by the e
mapping (see Sec. ITI).

At this stage, we can consider several kinds of unifica-
tions of y,,(x) and &, (x,y): As the most simple and typical
example, the following form will be proposed:

B (X)) = Vaclx) + Apc(x:p)s (2.2)
where g, denotes the unified Finsler metric of our unified
field. Starting from (2.2), we can construct several kinds of
metrical Finsler connections with respect to g, (i.e.,
Dg,,. = 0) (see Ref. 9) and can clarify the spatial structure of
the Finslerian gravitational field (see Sec. IV). It should be
remarked that in the case of (2.2}, the inverse of g, may be
given by, at least as the first-order approximation,
g* = y* — k4, and in this case, the indices should be raised
or lowered by »* or 7;, in the practical calculations for
physical problems. And it should be noted that the concrete
form of g, such as (2.2) cannot be directly obtained from the
standpoint of the theory of vector bundles.® By the way, from
aphysical viewpoint, the quantity 4, (x,y) represents, in gen-
eral, some microscopic effects caused by the internal vari-
able y, so that g, (x,y) itself embodies some microscopic fea-
tures of the gravitational field. Correspondingly, the
Finslerian structure dominated by g,,. gives, for example, a
certain kind of fluctuating or perturbating image at some
greater microstage than in Einstein’s sense. Therefore, some
interesting physical functions of 4, will be found with re-
spect to its microcharacter, which will be reserved for an-
other occasion.

ill. ON THE INTRINSIC BEHAVIOR OF THE INTERNAL
VARIABLE.|

As the internal variable, the vector y shows its own in-
trinsic behavior, which is geometrically grasped by its own
intrinsic connection or parallelism (i.e., §)) in the () field.
The intrinsic behavior of y is represented, as the typical ex-
ample, by the rotational property such as, in Asanov’s K
group,’®

y'=Kjy’, (3.1)
where K | means the rotation matrix. Here K} may be re-
garded, in the most general case, as a function of (x,y). Equa-
tion (3.1) can be “geometrized” as the intrinsic parallelism of
¥ (i.e., the intrinsic connection of y’) denoted by §)' in the
form

O =dy+ K yldx'+Lyyldyt (=0), (3.2)
where K, = — k(0K ["/dx*) and
Lj = — ki (3K[/dy*)k}, being theinverseof(§ " — K 7).
Equation (3.2) may be regarded as a “Finslerization™ of the
intrinsic behavior of y'. Then, 8y is embedded in the external
{x) field by the e mapping as follows:

Sy ety = dy* + K%, dx* + L%,y  dy*

(=N% dx* +P5dy¥) (=0), (3.3)
where K3, =efe} K}, — (9e[/dx*)ey, L%, =efelieiLj,
N5 =K%,y and P =685 + L%, y" [In the most general
case where K | and e are functions of (x,y), L%, is given by

959 J. Math. Phys., Vol. 26, No. 5, May 1985

L3, =éfelek Ll —(def/dy)e}.] Here,K 5, and L5, play
the role of horizontal and vertical coefficients of connection
and N is the nonlinear connection’ for the connection &. If
8y is not geometrized from the inherent law of y* such as
(3.1), then the conditions §y' = 0 and §y* = 0 do not hold
good, in general. But in our case mentioned above, the inher-
ent law of y” is satisfied automatically as in (3.1), so that the
conditions 8y’ = 0 and then §y* = 0 hold good as in (3.2) and
(3.3). The connection § given by (3.2) is assumed to be metri-
cal for A, i.e., 64, = O, so that the connection § given by
(3.3} becomes also metrical for A, ie,
Oh, (=€} e 8h;) =0, where the homogeneity conditions
with respect to the vertical coefficients of connection are not
assumed from a general standpoint, i.e., L}y’/5#0 and
L%,y" #0 (cf. Refs. 7 and 9). Concerning the conditions
8y = 0and 6h,, = 0, we had better assume, from the begin-
ning, the absolute parallelism of e (i.e., e = 0jin (2.1). This is
quite appropriate from a physical viewpoint (cf. Ref. 10).
Therefore, the conditions §y* = O and 64, = 0 are compati-
ble with each other without loss of generality and natural-
ness.

From the most general case mentioned above, we can
consider some special cases as follows.

HIfK } is a function of x alone, as in usual cases (cf. Ref.
10), then L}, =0in(3.2)and L5, =0in (3.3).

(i) If K} is a function of y alone, then (3.2) becomes a
Riemannian parallelism in the (y) field, where K;, =0 in
(3.2) and (3.3).

(iii) If the {y) field is flat (i.e., Minkowskian), then K}

= const and (3.2) reduces to 8y’ = dy’ = O (i.e., K}, =Oand

L) =0, so that fe = — (0e/dx*)e;  and

4 = — (3ef/dy “)e; in(3.3), because e becomes a function
of (x,y} in this case.

(iv) IfK | = K j(x) and K %, (x) in this case is equal to the
one-form linear connection'' A%, = ef(de;/dx*), then
K}, =0, so that in this case, K | turns out to be constant.

IV. ON THE INTRINSIC BEHAVIOR OF THE INTERNAL
VARIABLE.Il

As mentioned above, 8y* given by (3.3) reflects the in-
trinsic behavior of y* in the external (x) field, so that the whole
Finslerian structure at the stage of connection is also in-
fluenced by 8y*. Under these situations, the metrical Finsler
connection D with respect to g, [such as (2.2)] (ie.,
Dg ;. = 0) can be represented by, for an arbitrary vector X ¥,

DX*=dX*+I5,X*"dx" + C5, X dy*

=dX*+ F5, X" dx* +4%5,X*6y", 4.1)
where F3, (=I5, —M;C%,)and A%, (=Q, C3,) denote
the horizontal and vertical coefficients of connection,
M} (=Q}N?) being the nonlinear connection for the con-
nection D. [Q} is the inverse of P}: see (3.3).] Of course,
Dy*#8y". The horizontal coefficient of connection F4,, rep-
resents, therefore, the concept of unified gauge field'? for the
Finslerian  gravitational field. And the base
[8/9x* — M ;(3/dy*), Q}(0/3y")] and the dual base
(dx“,8y") can be set for the unified field. From (4.1), the covar-
iant derivatives with respect to x and y can be defined and
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then three kinds of curvature tensors and five kinds of tor-
sion tensors can also be introduced through the Ricci identi-
ties, but they are all omitted here for the sake of simplicity
(cf. Ref. 7).

Since Dy*#46y" in our case, the relations Dg,;, = 0 and
Dh;, #0and 8g;, #0and 6h;, = 0 hold. (The metrical con-
ditions 8h; = 0 are assumed under 8y’ = 0, so that 8h,, =0
are assumed under the absolute parallelism of e, i.e., 5e = 0).
That is to say, two different kinds of metrical Finsler connec-
tions Dg,, =0 and 6k, = 0 are introduced owing to the
difference of Dy* and 6y*. In order to obtain the relation of
Dy and 8y, we reconsider the relations Dg;,. = O0and 8g,, #0
as follows: The connection D is a metrical connection for g;,
derived from the nonmetrical one 8. Then, by use of Kawa-
guchi’s theorem'® which makes a nonmetrical connection
metrical, the desiring relation can be obtained, with neglect
of arbitrariness, as follows:

Dy =8y + 1808 ", (4.2)

by which the following relations can be obtained from (4.1)
and (4.2) (cf. Ref. 14):

9,
rs, =k, +§g‘”( i

ax*

—K:'ﬂgtll - ilygw)’

4.3)
Ccs =L« agwl Lt L
Ap — & ap + &g‘w ay# - vpgul - /‘Lygw .

Therefore, from (4.3), the relations between (Fj,, 4 7,) and
(K%, L%,) can be obtained by inserting (4.3) into the defini-
tions of F}, and 4 7, which are, however, omitted here for
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simplicity’s sake. As is understood from the above, the in-
trinsic behavior of y (i.e., 8)’) or y* (i.e., §y") represented by
(K, Lj) (3.2) or (K%,,L%,) (3.3) is absorbed into
(I %> Ciu)or(F,, 47,)(4.1)by means of the relations (4.2)
or {4.3).

Thus, the spatial structure of our Finslerian gravita-
tional field, especially the connection structure, has been
completely clarified by taking account of the intrinsic behav-
ior of the internal variable p. In the future, some other essen-
tial unifications of y,, and h; and some other interesting

examples of 8y or §y* should be investigated.
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We approximate the energy levels of the anharmonic oscillator with any coupling constant by

eigenvalues A;( g,T') of the operator

—d?/dx* + x* + gVr(x) with V;(x) = x* when |x|<T and

Vr(x)= T* when |x| > T. The functions 4,( g,T) are holomorphic with respect to g in a
neighborhood of the non-negative half-axis. The conformal transformation maps this
neighborhood onto the unit circle of the complex plane. It gives the summation method for the

Rayleigh-Schrodinger series for every g>0.

I. INTRODUCTION
In this paper we consider the spectrum of the operator
—d2
A(g)= +x*+gx*, g0,

dx*
inL? ~ o0, + o). Itis well known (see, for example, Refs. 1
and 2) that the spectrum of such an operator is discrete and
simple. Let 0 <z, g) <u4,( 8) < - be the eigenvalues of 4 ( g).
In the case g = 0 we have the operator of an harmonic oscil-
lator, so u;(0) = 2j + 1. One can formally write the Ray-
leigh-Schrodinger series™*

(8 =2%+1+alg+a?g + . (1.1)
This series, however, converges nowhere except g = 0 (see
Refs. 5 and 6). It is an asymptotic series* and one can sum it
by the Borel method™® or by the Padé approximant method.®
Recently a new rather heuristic approach to the summation
problem for perturbation theory’s divergent series was sug-
gested by Turbiner.'® We intend to describe an alternative
summation method for (1.1). We think it is rather simple and
it can be applied in many cases, not only for the anharmonic
oscillator.

We approximate 4 ( g} by the operator
2

B(gT)=—+x*+gVrlx),
dx
with
Ve ={Ts E <D
T4, if |x|>T.

LetO<A4(8T)<A,(8,T) < betheeigenvaluesof B (g,T).
Proposition I: limy._,  A,{gT)=u;(g) for every fixed
£>0. Moreover,
0<,(8) — 4,( 8. T)<Ce ) (g)T 1¥te =T -T2,
(1.2)

for sufficiently large T.
Thelinear operator family B ( g,T') is regular sothe Ray-
leigh—Schrodinger series

A&T) =2+ 1+ B + B¢ + (13)

converges in a circle |g| < 7. The radius of this circle de-
creases when 7— o, so one cannot directly use (1.3) for ap-
proximate calculation of ;( g) with any precision. However
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the function 4,{ g,T’) is holomorphic in a domain bigger then

lgl <7z
Proposition 2: The function A;( g,T') is holomorphic in

the domain
2r = (g:lg| <274
u{g:Reg>0, |Img| <CT ~*Reg)'’?},

when T T, = Ty J); the constant C depends upon j only.

The domain £2, can be mapped conformally onto the
circle |{|<1 in such a way that {(0)=0 and
&0, + o)) = (0,1). After substituting g,(§) into (1.3) and
transformating this series into the power series with respect
to §, one has

A8\ T) =2+ 1+ YT +¥ATI > + . (14)
This series converges in the circle |5 | < 1. After the inverse
substitution £ = £( g) into its sum one can obtain the value
of 4,(g,T) for every gef2r, particularly for every g>0. To
obtain explicit formulas it is more convenient to map the

half-strip

I ={gReg> —C,T* |Img|<C,T 4} C2,
onto the circle |§ | <1 by

§=Flg)

_ sinh((7/2C,)T%g + #C,/2C)) — sinh(C,/2C))
sinh((7/2C,)T*g + 7C,/2C,) + sinh(7rC,/2C;)

The F maps the half-axis (0, + o) onto theinterval (0,1). The
inverse mapping is

g= _2_C_i arcsinh[ 1+¢ sinh (ﬂC‘ )] —C,\ T4,
T 1—¢ 2,

Il. PROOF OF PROPOSITION 1

First of all, the potentials x*> + g¥,(x) increase when T
increases; so by Courant minimax formulas for eigenvalues,
A;(&T) increases with respect to 7 and A,( 8 T)<u,( g)
Thus,

A& T)  pl(8g)<m)(8), when T—o . (2.1)

Letusintroducesome notation: Q (A, g,T')is the orthoprojec-
tor in L,( — e, + o) onto the subspace spanned by eigen-
functions of B ( g,T) with eigenvalues <A,
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N(A,gT)=TrQ(A,8T)=4#{jA(gT)<A},
and
N(A, g)=#{ju;(g)<A}.

By (2.1)

N(A, g)<N(A,gT). (2.2)
Suppose we are able to obtain the estimate

[4(g) —B(&T)1Q(A, & T)I<1&A.T), (2.3)

with ¢( g,4,T)—0 when T—; g and A are fixed. Then for
every ueQ (A, g,T)L,( — «, + ) one has

(4 (g)uu)| = |B(&,T )u,u) + ((4(8) — B (8T )u,u)
<A + N gA,T)uu),
and by the Glazman variational lemma*!’
NA+1gAT)g>TrQA,gT)=N(A,gT). (2.4)
By (2.2) and (2.4),

lim N(4,8,T)=N(A,g),
T

A(&T)/ 1;(8), when T—>oo .
Moreover,

u;(8) —A,(&T)<r(8A;(8T), T). (2.5)
Now our aim is to obtain (2.3). Suppose that g7>>A. Let
@{x) be the eigenfunction of B ( g,T") with an eigenvalue A <A,
ll@ll = 1, and @(x)> 0 if x is sufficiently large; let x, be the
positive root of the equation

et +xt=2
and x,<x, be the nearest to x, local maximum of @ (we will
use general properties of solutions of the Sturm-Liouville
equation and Sturm comparison theorems; see, for example,
Refs. 1 and 2). The function @(x) is decreasing in the interval
(x1, + ). Obviously x,<T'% We have x>+ gVri(x)
— A»Twhen x> T''/?; 50 @(x) is majorated on the half-axis
(T'%, + ) by the decreasing solution of the equation
¢¥" — Ty = 0. Thus,

plx)<@ (T ?)exp( — T'*x — T/?)

<@leJexp(TVx — TYV?), x>TV2. (2.6)

When xe(x, — 7/(24 ?),x, + /(24 /?)) the p{x) can be es-
timated below by the solution of the problem

V' +AY=0, ¢Kx)=0, ¢x)=¢k),
because 4 — (x* + gV, (x)) <A. So

Px)>@ (x1)cos(A x — x,))
on this interval. Thus,

+ o X, + /(24 '3
1= f ¢2(x)dx>f @ }(x)dx

x, — w/(2A l/z)
/2

>4~ ”2¢2(x1)

cos?xdx =2 A ~V2p 7y ).
—ur2 2

Hence
¢2(x‘)<277_,—1/1 1/2 .
Therefore
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I4(8)—B(&T)le|?

=g (x* — TYp (x)dx

Ixi>T
<4gr AV | xBexp(— T'V?x — T'?)dx
T

<C2 gA V2T 2 exp( — (T?2 - T)).
Finally,

N[4(g)—B(8T)IQA, &T)|
<N”2(A,g,T)C, gA 1/4T15/4 exp( _ (T3/2 _ T)/Z)
<C,gA YT/ exp( — (T3? —T)/2). [ ]

ill. PROOF OF PROPOSITION 2

The potentials x* + gV r(x) are even so all eigenfunc-
tions are even or odd. The restrictions of theirs on the half-
axis [0, + o) are eigenfunctions of the Sturm-Liouville op-
erator on [0, + ) with Neumann or Dirichlet boundary
condition correspondingly. Even eigenfunctions correspond
to eigenvalues with even indices and odd eigenfunctions cor-
respond to eigenvalues with odd indices. Our aim is to esti-
mate the radius of convergence of 4,( g + A,T) with respect
to & when g>0. To apply the perturbation theory we should
like to know lower estimates for 4,; —4,;_, and 4,;, ,

— Ay _1 (the eigenvalues with even and odd indexes corre-
spond to different operators on the positive half-axis, so we
can investigate them separately). Let ¢, (x) be the solution of

—@F + X%, +8Vrix)p: = A, (3.1)
on [0, + o) normalized by the following conditions:

) f " Rrdx =1,

(i) @,{(x)>0, if x is sufficiently large.

Such a solution exists and it is unique. The family @, (x) is
pointwise C ! with respect to A. Let ¢, = (d /dA )p,. Then
¥, satisfies the equation

—Yi + K =AY, + ¢, (3.2)
with K (x) = x? + g¥r(x), and
J; @, ¥, dx=0.

Let K (1) > A. Then the function

7. () = @, (x) f ok [~ iz

satisfies Eq. (3.2) on the half-axis [7, + o0 ). One can continue
this function~to the interval [0,7) as a solution of (2.2) with
conditions ¥, (r — o) =, (r+0), ¢, (r—0)=y;(r+0).
By the Sturm comparison theorem,

@1 @)<@a(ylexp( — (K (p) — A1)z —p);

SO
J‘“’ \d 23y
2 — L
y P aleldz 2K (y)—A4
and
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0
<Pan)<ex (x)j K(y)
Therefore ¥, (x)eL,(0, + ) and
Ba ) = 2 (x) — @2 (x) j X))

Now the C ! dependence g, (x) upon A is obvious.
Consider A from the interval [4,, ;,4,]. Leto{d)be
the smallest zero of @,(x). According to the oscillatory

theorem,'? @, (x) has j zeros. The function o{4 ) increases
monotonically in the interval [A;_,,4,]. Really,
@, (x + o) is the jth eigenfunction for the operator
d 2
i +K(x+ o) (3.3)

on the positive half-axis with Dirichlet condition. The family
of potentials K (x + o) increases with respect to o, so 4 (0)
[and o{4 )] increases by the Courant minimax principle. Let
0(4,;) = 0,. To estimate A,; —A,; _, we will derive (i) the
lower estimate for oy, and (ii) the lower estimate for di /do.

The first step is very simple. The function ¢ 2 (x) satis-
fies the Neumann condition, so by the Sturm comparison
theorem

172

|1, %) > @5, (O) cosiA f2x) ,
0<x<(m/24 5 /2.
Hence,
oo (m/24 5. (3.4)

For the second step remember that ¢, (x + o) is the ei-
genfunction for (3.3). By the Rayleigh formula,

di _ S3 19K (x + 0)/3olp}(x + a)dx
do S5@ i +o)x
52 (2x + gV rix)p i (x)dx
- 55 @ lxdx '
Let x, = x,(4 ) be the smallest positive local extremum of

@, (x). Itis very simple to derive from the Sturm comparison
theorem that

A) x4 )
f cpi(x)dx<f 2 (x)dx<
0 ald)

A) 1
r @5 (x)dx<—.
o 3

Now let us remember the asymptotics for u,(g). Let
¥ (x) be the eigenfunction of 4 (g) After the well-known
scaling transformation x = g~ /Sy

(3.5)

" pidx, (3.6)

x4}

SO

—d? B
_7}—:2-'["(— + 5 + 87 = il 8872 -
Therefore
bl 8)~8"Pvi, g+ w, (3.7)
where the v, are eigenvalues of the operator — d 2/dy* + y*.

We choose T, from the conditions
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() (—2"‘) +8(7) >py(g) for every g50;

(i) To>{§)"*(log9)"/2.
The asymptotics (3.7) allow us to fulfill the first condition.
The function @, (x) decreases on the half-axis [T /2, + o).
When x> 7, it is majorated by

@ (T)exp( — (T? +gT* — 1)"*x — T))

and on theinterval [T /2,T ] itis estimated below by the same
function. Hence

[ oaumax

T
S7@}x)dx _
AT T < lexp(TyT?+gT —A)—1]"
ST (x)dx

<[exp(T\ATT+{T")—1]""<{,
because A<A,;(8T)<uy;(8). Let w(g)=(m/2uy; *(g).
Clearly w( g) < x,(4 ) and by (3.6)

u g) 1
[ ormax<.
o 2
Thus,

f " (2x + gV )2 (x)dx
>f (2 + 4gx)p 2 (x)dx
max{o,w)

P max(o,w)
>Cgus; g)(l - L @3 x)dx — fo ¢>i(X)dx)

>C2g”2 .
Finally
dA
-—>C 1/2 .
do d
Taking into account (2.4) and (2.7),

J'Zj — 112]._ . >(17'/2)C3g”2/1 27 ”2>C4g”3 .
Letd;(g) =min(d; — 4;_,,4;,, —4;). Then
d(g)>Csg'. (3.8)
The constant Cs depends upon j only. Consider the operator

B(g+hT)=B(gT)+hVrlx)

as a perturbation of B ( g,T’). The estimate (3.8) and || V()|
=T* imply’> the Rayleigh-Schrodinger series for
A;(g + h,T) with respect to 4 to be convergent in the circle
|h |<CsT ~%g'/%. When g =0 it converges in the circle
|h|<2T 4 because d,0)=4. |
Remark: One can approximate x* not by V,(x) but by
some other function, for example, by'°

V. (x)=x%"", a—0.

The only difficulty for such an approximation is that
x? 4+ gV, (x) does not increase monotonically and it invali-
dates our argument for existence of the function A (o) in the
proof of Proposition 2. However, this function exists. If it
does not the Sturm-Liouville operator (3.3) on the half-axis
with Dirichlet condition has for some ¢ two eigenfunctions
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which correspond to different eigenvalues but have the same
number of zeros.
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On the propagation of the operator average in truncated space

Masao Nomura

Institute of Physics, College of Arts and Sciences, University of Tokyo, Tokyo, 153, Japan

(Received 7 September 1984; accepted for publication 11 January 1985)

The propagation of the operator average is described in truncated space with some quantum
number(s) being fixed. It is first shown that the propagation coefficient satisfies an analog of the
Chapman-Kolmogorov equation. Next, particle-hole symmetry is incorporated into the
propagation of the operator average. It yields an expression that facilitates evaluation of many-
body trace. Fermion and boson systems are treated alike.

I. INTRODUCTION

Trace (or average) of an operator in the truncated space
of n particles being distributed over definite NV orbits has
been studied in the analysis of atomic and nuclear spectros-
copy.!~” The trace of interest is defined on the wave functions
with some quantum number(s) A other than » being fixed.

The operator average in the truncated space propagates
in some cases.' Propagation here implies that the n-body
trace (or average) of an operator is expressed as a linear com-
bination of the first few-body traces of the same kind which
are called input traces. The proportional coefficient that re-
lates the n-body trace to each input trace is called the propa-
gation coefficient.!

Realization of propagation of operator average relies on
A, though little attention has been given to boson cases.”
Some examples of A ’s yielding the propagation in a fermion
system are isospin,>* seniority,* and quantum numbers
specifying® U(4). Each of them is surely associated with a
chain of the group. It is, however, unclear if conversely there
would be a chain of the group in case the operator average
propagates.

The purpose of the present paper is to describe proper-
ties of propagation of the A-fixed operator average. Fermion
and boson systems are treated alike throughout the work.
Neither the group theoretical premise nor explicit 4 is re-
quired. We first show that the propagation coefficient satis-
fies an analog of the Chapman-Kolmogorov equation. It
implies that the propagation coefficient is akin to the Green
function or propagator. The equation is rewritten as a differ-
ence equation which can be illustrated by a branching dia-
gram with weighted paths. Next, we incorporate particle-
hole symmetry of the operator into the propagation of the
operator average. French® treated it for fermions as a trace
network problem. Making use of relations among many-
body operators, we combine the global nature of particle-
hole symmetry with the local nature of the propagation of
average, and obtain a simple result which does not require us
to solve the trace network problem at all. Particle-hole sym-
metry is defined also in a boson system so as to treat fermion
and boson systems alike. The present manipulation reduces
the number of input traces and, therefore, facilitates evalua-
tion of many-body traces.

Section II concerns the definition of the propagation of
the operator average. In Sec. I1I, properties of the propaga-
tion coefficients are described in connection with relations
for many-body operators. In Sec. IV, the operator satisfying
particle-hole symmetry is expressed as a sum of mutually
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independent many-body operators. The result is used in Sec.
V to combine the propagation of the A-fixed operator aver-
age with particle-hole symmetry.

Il. PROPAGATION OF THE A-FIXED TRACE
The symbol ({ )) denotes the trace

(V™ =3 (ndp|Vi|ndp) = Tr(p,, Vi) (1)

u
where ¥, stands for a k-body operator. The n-body state is
specified by quantum numbers A and ¢. We define p,,; by

Pra = 3 |nAp) (nip|. (2)

The propagation of the average implies that

W)™ _ o Zdld (V) 5

dini) % d (kA" ’

where d (nA ) indicates the dimension of the space with # and
A being fixed. The factor Z (nA,kA '} is called the propagation
coefficient. The left-hand side (lhs) of (3) indicates the aver-
ageof V.

The k-body operator V. is expressed as
V=Y (kA WV kA "u")A * (kA 'w')4 (KA "u"), (4)
where the sum is over repeated Greek indices. The operator
A T (kA 'u’), made of fermion (or boson) creation operators of
order k, creates the orthonormalized k-body state.® Its con-

jugate is denoted as A4 (kA 'u’). These are called state opera-
tors. The relation (3) is rewritten as

((4 (kA 1) A (kA "p")))™ /d (nd )
= 6(A°A "6’ ") Z (nAkA"V/d (KA ). (5)

For the case of A = T (isospin) and ¢ = the other quantum
numbers including T,, for example, the propagation coeffi-
cient is expressed as*

T+n/2+1 n/2—-T
Z(nT, kT") = [(T:- k//Z-:L 1) (ka - T')
_(T+n/2+l)( n/2—T )]
k/2—T" I\T"+k/2+1
X Q2T + 1)/2T + 1). (6)

It satisfies
Z(nTkT')=Z(n+2T0,kT’)

x3 (277 fer+ (")) )
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where m runs from k /2 — T’ to k /2 + T'. To deduce (7)
from (6), we have only to use (4.1) of Ref. 8. The relation (6) is
valid also for ¢ = } bosons.

lil. PROPERTIES OF PROPAGATION COEFFICIENTS IN
CONNECTION WITH RELATIONS FOR MANY-BODY
OPERATORS

We start from the following premise, in place of (5) it-
self: ‘
CRMUESVYTIFIUES VAT )i
=6(A'A")8(u' u")X (' — independent factor) (8)
=84 A "' " )Z (nA,n — 1 2°)d (nd )
X[d{n—14"17", )
which is (5) for k = n — 1. We regard (9) as the defining rela-
tion of the propagation coefficients. We discuss (9) itself
further in Appendix A.

By the induction method we prove that the relation (9)
leads to (5). The relation (5) for n = k + 1 reads (9). We as-
sume (5) to be true for n = n, and derive it for n = n, + 1.
We have the identity,® valid for fermions and bosons alike,
Y (vold " (kA 'u

) A (kA "p") | Wo')

XA *(lvo) A (V')

ﬁ - k + ’ ’ ” ”
where the sum is taken over repeated Greek indices. The
symbol 7 indicates the number operator. Using (9) and (10)
yields

(mo+ 1 — Kk ){{A (KA ‘') A (KA "p")) )+ 1

=3y Zin,+1 VgV ) ({4 T(kA 'w') A (kA "u")) )"

dng+1v)
d(nyv)
Applying (5) for n = nyto the right-hand side (rhs), we obtain
(5) for n = ny + 1 together with the result

(Mo + 1 = k)Z (g + 1 v,kA’)

(11)

=Y Z(no+ 1 v,ngv')Z (nov' ,k1"). (12)
v
Changing notations in the last relation gives

Y Zndn —19Z(n —1vkA ') = (n — k)Z (nd,kv).

’ (12)
It can be regarded as the basic difference equation for the
propagation coefficient once the explicit form of
Z (nA,n — 1 v) is known. Actually, it, combined with (A2)
and (A3) in Appendix A, yields the difference equation (31)
of Ref. 4. From (12') we obtain, as easily proved by induction,

—k

S Z (nA,WZ (A ") = ('l' k)z (nAKA ). (13)
Applying (10) to the k-body operator in {5) also yields (13).
The binomial coefficient in (13) is ascribed to normalization
of the propagation coefficient, and will vanish if we use
Z(nA,kA") [(%)] ~ ' as the normalized propagation coeffi-
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cient. The relation (13) is akin to the Chapman-Kolmogorov
equation characteristic of Markov chains. The quantum
numbers A and # in the former correspond to space and time
in the latter, respectively. The propagation coefficient may
well be said to be an analog of the Green function or the
propagator in this sense. French® noticed a similarity
between the propagation coefficient and the Green function
in a sense different from (13). The relation (12') in case
k =n — 2reads

YZnin—1vZn—1v,n—24")=2Z(niAn—21")

(14)

Conversely, we easily get (12') from (14). A branching dia-
gram with the path being weighted by Z{nAd,n —14') is
available to express (14), as used in Ref. 4. The relation (13)
for / = k + 1 reads

S ZnAk+1VZ(k+ 1 vkd') = (n — k)Z (nA,kA"). (15)

It is also a difference equation for the propagation coeffi-
cient. Let us multiply ( — 1)’ on both sides of (13) and sum
over / from k to an arbitrary integer s(<n). Then, we get

S S ZnAWZ (vkd ) —

I=k v

_(n—k—l
- s—k

The last relation for s = » is the orthogonality relation

l)l—s

)z (nA,kA ). (16)

S S Z(nAWZ (Ivkd ) — 1)~ = 8(n ke )5(AA ).
I=k v

(17)

For A = T, the orthogonality relation was given in (A.4) of
Ref. 4.
Let O be a general operator which is expanded as

o=73 ¥, (18)
k=0

where u is called the maximum particle rank of 0. From (3) it
follows that

UON™ _ & Zlnd kA YWY 1)
d(ni) K o; d{kA’)

Its inversion is expressed by using (17) as

{(Fn= Z kA MONM -1t 20)

Tdki) ,go 2 d (W)
We substitute (20) in (19) and, subsequently, use (16). Then,
we get

<<o>>"*/d(n1)
Zpd WO N"

‘};—( u—1 ) D =

It was derived by French’ _in a different way.
The k-hole operator V, is defined by

Ve =B(k) 3 (kAW |V kA "p")A (kA "p") A * (kA 1),
(22)

(21)

Masao Nomura 966



where B (k) is the sign function given by
B (k)= 1 for fermions and ( — 1)* for bosons. (23)

The sign function F (k) is defined by

F (k)= ( — 1)* for fermions and 1 for bosons. (24)
The k-hole operator differs from the k-particle operator of
{4) only in the ordering of 4 * and 4. The term “hole” here
implies antinormal ordering of them and, therefore, is used
also for a boson system. The sign B (k) in (22) is beyond a
matter of convention. Without it, any of (30) and (51) given
later would not be valid for bosons.

We commute a pair of operators in (22) using®®

A(k'A ') A * (Kip)
=Y (k'A'w|A*(I'Vo') A (lvo) kAp)
XA +(lvo) A(I'Vo\Fikk' +k —1), (25)

where the sum is taken over / and repeated Greek indices.
The sign factor F, defined by (24), is characteristic of fer-
mions. We summarize the resultant expression from (22) as

- k
Vi=B(k) IZ F(I)Vk,l’ (26)

where V, ; indicates the /-body operator generated from ¥V,
by (k — !) times contractions®® and is given by

Vi =Y (kAp| Vi |kA 'w')

X (kA ‘1’ |4 *(Iv'o') A (vo) | kAv)
XA *(vo) A (W ). (27)

The operator ¥, , reads ¥, . The I-body trace of ¥, , is asso-
ciated with the k-body trace of V, as

((Vk,l))lv=;Z(M’IV)((VI:)>M' (28)
To get it, we use (5) and (27). From (27), it follows that?
k—m
VI',mEV(kJ),m = (1_ m)Vk,m' (29)

Using both (26) and (29), we see that V' = ¥, for the case
Vi = V.. The relation (13) is obtained again from m-body
traces of the operators on both sides of (29). From (22), it
follows that

m~J _~ o~
V) =nv,, (30)

which is checked by using (25).
For fermions, the following symmetry holds under suit-
able choice of quantum numbers:

(Iva|A *(kAu) A (kA 'w')| Vo’
=(N~IvVd|A (KA W) AT (kAN —Iva)  (31)

=(N—kAulA *(N —1vo)
XAN—Ivo) N —kA'u'). (32)

The last relation results from (31). Using (31) and (32) with
k=0, we get

d(nA)=Z(NO,nA). (33)
The symmetry (31) implies
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(N=nAp|Vi [N —nd'y')y = (nd'@'|V,|ndp). (34)
Applying (26) to ¥, in the matrix element on the lhs, we get

3 (= P = () 33)

Using (3) and (28), we express both sides in terms of the k-
body trace of ¥;. Then, we obtain a new relation for the
propagation coefficients:

(= YZ(nAWZ KA W)  Z(N—nAkA')
?—; d(lv) T dkA)) '
The relations (31){36) are chafactedstic of a fermion system.

(36)

IV. A GENERAL FORM OF OPERATOR SATISFYING
PARTICLE-HOLE SYMMETRY

Here, we discuss the expansion (18) in detail, imposing
particle hole symmetry on O as

0=(-1)0, (37)

ie.,

gh=hw;n. (38)

The sign ( — 1)* in the above expressions is due to the fact
that ¥, involves ( — 1)*V,,, as seen in (26).
Substituting (26) in (38) yields

Vi=(=1F() Y Bk)V,,. (39)
k=1
This, for / = u — 2p — 1, reads
2p 1
Vi1 =F(1)k§‘, TB(k)V —ku—2p—1- (40)
=0

The relation (39) for ¥ — I being even does not provide any
new information, since it is shown to be deduced from (40).
Let us derive from (40)

2 1
Vu—2p—l =F(1)k2 7C2k+qu—2p+2k,u—2p—1! (41)
=0

where C,, . | is a definite number determined by
2": (2n +1
o \2k + 1
withC, = 1.
Proof: We prove (41) by induction on p. In case p = 0 it
reads (40) with p = 0. Supposing (41) with p<g, let us derive
(41) with p = ¢ + 1. From (41) with r<gq it follows that

)Czk+1 = 2C1 - C2n+ 1 (42)

Vu 2r—lLu—2g—3
2k —2r+2g+3
e § e (L)

XVu—2r+2k,u—2q—3‘ (43)
To get the rhs, the relation (29) is used. The rhs of {40) for

P =g+ 1 is split into two parts according to whether k is
even or odd:

z 1
Z—z_uzr 1,2g—~3° (44)
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We put (43) in the second term on the rhs. Applying the
defining relation (42) to the resultant expression, we get (41)
withp=¢ + 1. Q.E.D.

To determine the explicit form of C,, . ,, we solve (42)
for n = 1,2,...,k. Putting n =1 in (42) yields C, = — 2GC;
from which we get C; = — 1. From (42) with n =2, it fol-
lows that 3C; + 10C; = — 2C;. Using the known values of
C, and C,, we get C;= 1. Repeating this way, we get
C,= —4,Cy=31,C,, = — ¢, Cy; = 5461, etc. The rela-
tion (41) implies that the terms { ¥, _,,¥, _5,...} are unique-
ly determined by { ¥,V _,,...} as a consequence of the sym-
metry (37).

The expansion (41) is substituted into (18) to yield

O0=Y R(V,_2n) (43)

where m = 0,1,...,[u/2], which denotes the largest integer
contained in #/2, and

1
RV )=Vi +F(1)Z‘2‘C21+1Vk,k_21-1- (46)

The index / runs over 0,1,...,[(k — 1)/2). The operator R (V)
is generated from V. Its particle rank is indefinite (<k ).

Let us show that the operator R (V) has the definite
particle-hole symmetry:

R(V)=(—1R (Vi) (47)

Proof* The operator R (V, ) is transformed, by using (26)
and (29), as

R(V)=Blk) § FimVs,

~BIS G 3 Sy am
()

where the sum of /is taken over 0, 1,...,[(k — 1)/2]. Changing
the order of the summation over / and m yields

—~ ad 1 k—m
R(V)=Blk) 3 FimlVen |1 =23~ CZ’“(21+ 1)]
(49)

where / runs over 0,1,...,[[k — m — 1)/2]. In case m = k, the
sum over / seen on the rhs reads 0. In case m > k, the summa-
tion over / is easily done by using

; (ZkI:_ 1)C2k+ {1+ 86,2k + 1)} =2C,, (50)

where 5>0, and & runs over possible values of %, i.e.,
0,1,...,[(6 — 1)/2]. For b being odd the relation (50) reads as
the defining relation (42). We see that the rhs of (49) vanishes
for k — m being nonzero even. Replacing the argument m in
(49) by a new argument==(k — m — 1)/2, we obtain (47) from
(49). Q.E.D.

The operator O expressed in the form of (45) satisfies the
symmetry (37) because of (47). It is now concluded that the
expression (45) together with (46) is the necessary and suffi-
cient condition for O to satisfy (37).

In Appendix B, the decomposition (45) is compared
with the unitary scalar decomposition discussed in Refs. 2, 6,
and 7.
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V. TRACE PROPAGATION COMBINED WITH
PARTICLE-HOLE SYMMETRY

For fermions where (34) is valid, the n-hole and the n-
particle traces agree with each other in magnitude, if the
operator satisfies the symmetry (37). This property is not
reflected in (19). Equating (19) to the same expression with n
in it being replaced by N — »n produces coupled linear equa-
tions that provide mutual dependence among input traces.
Selection of independent input traces requires us to solve the
equations numerically. French® called this the trace network
problem. Here, we solve the problem without recourse to the
trace network problem. The present manipulation relies on
the result in the last section and is applied to a boson system
as well as a fermion system.

Let us apply (3) and (28) to an #-body trace of O which is
expanded as (45). We then obtain

((oN™ _ X(nAdu—2m AV, _ )y —2mA

- s

dind) & d(u—2m,A"

(51)
where m runs over 0,1,...,[u/2]. The coefficient X is defined
by
X(nA kA"

=Z(nAkA") + F(1)d (kA") $Car.

X3 Z(nAk—21—10)Z (kA" k —2]1—10)
= 2dk—21—10)
where / runs over 0,1,...,[(k — 1)/2].

For fermions where (34) is valid, the coefficient (52) is
symmetric (antisymmetric) in n-N /2 for k being even (odd).
In case it is 2 polynomial in », it is expressed as a polynomial
inn — N /2 of degree k as (13) suggests. For example, we get,
using (6),

X(nT,31/2)=(n—N/2){2(n — N/2)?

—8T(T+1)—3N?%/2+4}/24. (53)
For a boson system, the coefficient (52) is a function in
n + N /2, as suggested by (4.12) of Ref. 2. Notice that the
coefficient (52) survives even if n <k and that it does not
satisfy (13).
The input traces in (51) are

. (52)

(F 4 LV o)) 22 Vo)) o (V) (54)

which are a subset of the input traces in (19). The number of
input traces is much reduced in (51). It implies an advantage
to (51) in the trace calculation. The propagation coefficient
Z (nA,kA ') for a fermion system becomes very large as  ap-
proaches N. Since the n-body average is not large, there oc-
curs remarkable cancellation among terms on the rhs of (19).
It will cause a problem in numerical calculation. Such a situ-
ation will be avoided by using (51) because the coefficient {52)
is symmetric in #-N /2.

Among input traces (54), the trace ({(¥,))** is most
troublesome in actual calculation. We can avoid it by replac-
ing the input trace by new inputs { ({(¥ ) )**; u — k = odd}
which are excluded from (54). Let us consider, for example,
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the T-fixed trace with u = 4. Using (41) together with (28)
yields

(PT=F() S L Z@TATHINT (59
and

Py = [2 S ZRT1 172V

—S Z@4T1 1/2)((V4))“T'] %”.
' (56)

Solving them, we can express ({V,))*” in terms of
((V3))*T', where T' =} and §, and ({V,))"""%.

It is straightforward to extend (51) to a general operator
which breaks particle-hole symmetry (37). We have only to
decompose the operator O’ as

0'=0'+0)/2+(0'—0"/2 (57)

so that each term on the rhs should satisfy (37). In the usual
cases, the operator O ' has the form of an operator product.
The relation (30) is then conveniently used to get O ' from O .

APPENDIX A

The relation (9) is expressed in terms of coefficients of
fractional parentage (cfp’s) (see Ref. 6) as

n 2 (n—1,1'u + 1voln, Au)
uvo

X{n—1,A"u" + ly,o|lniu)
=84, A" pw"VZ(nA,n —14")d (nd)
X[d{n—14"]"L (A1)
It is crucial that the coefficient Z be independent of u'. This
type of relation is realized in case cfp is factorized'® into a
few parts as a result of a chain of the group. If there is a chain
of the group attached to 4 and 4, the propagation coefficient
can be evaluated from cfp or a Clebsch—Gordan coefficient
characteristic of a chain of the group. For the case of A = T,
we easily evaluate® the lhs of (A1) and get
ZinTn—-1T—-1/2)=Tn+2T+2)/2T+1) (A2)
and
ZnTn—1T+1/2)=(T+ )n—-2T)/2T+ 1),
(A3)
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which is valid for 7 = } fermions and bosons alike. Each of
them being divided by # is just a ratio of dimensions of the
representation of symmetric group.

We get the same relation as (13) if we start from

<n/1,u ZA fn—12'u)V(n~14"uw') nd ”,u")
7

=84, A ") pp")Z (nAn — 1 1) (A4)

as a premise instead of (9). For a fermion system where (32) is
valid, both (9) and {A4) coincide with each other.

APPENDIX B

We compare the decomposition (45) with the unitary
scalar decomposition.>5’
An arbitrary k-body operator ¥, can be expanded as

k
1
Vi= 3 —2_R(Vk,m){1 + 8(k,m)}, (B1)
m=0 .

as easily be checked by using (46). The operator (V; + V,)/2
is expressed as a sum of even m terms on the rhs, and fulfills
particle-hole symmetry as is expected. The unitary scalar
decomposition implies

o3

where U, is the m-body operator which satisfies (47) as
R (V, ,.) in (Bl) does. While the number operator 7 appears
in (B2), it does not in (B1). The operator R (¥} ,,) in (B1) has
indefinite particle rank (<m), while the particle rank of U,,
in (B2) is the definite value m. The relation (46) in case
V. = U, reads R (U,) = ( — 1)U, as U, , for p < k always
vanishes. The operators {U,,} and {V,,} are related to
each other through (2.21) and (2.22) of Ref. 2.
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We consider a system in three space dimensions consisting of a finite number of oscillators with a
nonlinear interaction. Using projectors on N-particle subspaces of the Fock space, we show that
the time evolution operator is strongly approximatable by exponentials of self-adjoint finite-rank
operators (finite-dimensional Hermitian matrices), which can easily be calculated in the

corresponding eigenrepresentation.

I. INTRODUCTION

It has been suggested in Refs. 1-4 for nonrelativistic N-
body potential scattering to approximate strongly the wave
operators and weakly the S matrix by exponentials of bound-
ed self-adjoint or even finite-rank self-adjoint operators. In
the latter case the approximate wave operators and the ap-
proximate S matrix can be calculated easily using the eigen-
representations of the finite-dimensional Hermitian matri-
ces corresponding to the full and asymptotic Hamiltonian,
respectively.

This approach has been tested successfuily in the two-
body system for a variety of short-range nucleon-nucleon
potentials plus the long-range Coulomb potential.” It has
been applied to the three-body charged particle process
d + p—p + p + n (see Ref. 2).

Let us recall some of the basic features of the approach.

(i) As long as the wave operators exist, the interaction
can be rather arbitrary, in particular it works for every real
coupling constant.

{ii) The strong approximation of the wave operators and
the weak approximation of the § matrix is based on strong
resolvent convergence of the approximated full and asymp-
totic Hamiltonian, respectively. That is a rather “weak”
condition and it can be generalized to functions of operators.

(iii) In contrast to stationary (multichannel) scattering
theory, where the scattering process is expressed in terms of
Green’s functions which contain singularities and which
correspond to the physical picture of multiple vertices and
free propagation, our approach is by construction free of
singularities.

The properties (i)-{iii) encourage us to try to extend the
approach to field theoretic models. As a first step in this
direction we want to consider in this paper the time evolu-
tion operator for a system consisting of a finite number of
oscillators with a nonlinear coupling. The purpose of this
paper is twofold. First, for a finite system of oscillators with a
nonlinear coupling, which cannot be solved via normal co-
ordinates as in the linear coupling case, an approximation
scheme is provided. Second, the ground work is laid for a
generalization to field theoretical models.

The paper is organized as follows. In Sec. II we discuss
the approximation in detail for an anharmonic oscillator in
one space dimension (i.e., one oscillator with a nonlinear self-
interaction). The generalization to a finite number of oscilla-
tors in three space dimensions, given in Sec. III is then very
straightforward.
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Il. THE ANHARMONIC OSCILLATOR IN ONE SPACE
DIMENSION

The harmonic oscillator Hamiltonian in one space di-
mension is given by

H°=p*/2m + (mw*/2)x* = wla*a + ), (2.1)
where

a = (mw/2)"% + [i/2mw)"?]p, (2.2)

at = (mw/2)"* — [i/2mw)'?]p, (2.3)

[aa*] =1 (2.4)

We consider all the operators to act in the Fock space %,
which is a Hilbert space. The vacuum state |0) is defined by

al0) =0. (2.5)
The n-particle states
|n) = (a*+"/J/a1)[0) (2.6)

form a complete orthonormal basis. The particle number
operator N is given by

N=a*a (2.7)
and yields

N |n) = n|n). (2.8)
We consider the interaction Hamiltonian

G
H™=exp(—N) ¥ hi'a™'a’exp(—N) (2.9)
Li=0

and a total Hamiltonian

H=H+ H™ (2.10)

Because we want to deal with self-adjoint operators, we re-
quire the complex G X G matrix 4™ to be symmetric. The
exponential operator has been introduced to generate a fall-
off behavior, such that A" becomes bounded.

Proposition 1: H° with the domain D (H °)C % is a self-
adjoint operator; '™ has the domain D (H'™) = % and is
self-adjoint and bounded; and H has the domain
D(H )= D (H ") and is self-adjoint.

Proof’ Obviously H ° is symmetric, and

D)= [pwe I = 5 walm, § wla< o]

n=0
(2.11)
is dense in #. For each ¢ € & thereare ¢, € ¥ given by
= ¥n
)= —_—|n). 2.12
Wer= 3 ! 2.1
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Hence, one has

H L), ) =¥ (2.13)
which implies
Range(H° + i) = F. (2.14)

Then H? is self-adjoint by Theorem 5.21 in Weidmann’s
book.?

Next we claim that for each i, j € N there is a polyno-
mial

A it
R Mx)= 3 rexk, (2.15)
k=0

of degree i +j with real coefficients 7., such that for each
Y e D(NY*+)72) it holds that
lla*‘a gl|<||R “+ N 2.
Application of the shift operator a*‘a’ on |k ) yields
(k(k — 1)k —j+ 1)k —j+1)
ok —j+ D)2k +i—j), if k—j>0,
0, otherwise.

(2.16)

atiallk) =

(2.17)
Hence

lla+alp|2 = g |(k (ke — D)l —j + 1)k —j + 1)

wlk —j+ NP

= Slm+i—in+i—i=1
ol — i 4 Vn — i 4 1) — i + 2 (n) |,
(2.18)

which establishes Eq. (2.16).
Thus one can find a polynomial R ‘°’ (x) with real coeffi-
cients such that

2 hita*tialy
ij=0
for each ¥ €D (N®/?).
We have that H° is self-adjoint, N is self-adjoint and
non-negative, hence exp(— N) is bounded. Moreover
exp( — N)maps.Z into.D (N*/?)for an arbitrary k € N. Thus
we can estimate

|l #||<|lexp( — N)[|[IR YN '"Z)exp( ~ N )|, (2.20)

for all ¢ € &. Obviously R'®)(N "/?)exp( — N) is bounded.
Hence is H™ a bounded operator with D (H'™) = % . Be-
cause H™ is also symmetric, we can conclude that ™ is
self-adjoint.® For H'™ to be bounded means H™ is relatively
H° bound with a H° bound 0. Thus Rellich-Kato’s
Theorem’ implies that A is self-adjoint and D (H ) = D (H°).

Now we introduce finite-dimensional approximations.
Let P, denote the orthogonal projector on the subspace gen-
erated by {|0),]1),...,|n) }. We define

| <&, (2.19)

H} =P,HP,, (2.21)
H™=p Hnp (2.22)
H, =P, HP,. (2.23)

Proposition 2: H? ,H'™, H, are self-adjoint, finite-rank
operators having the domain .%.
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Proof: H°,H™ H are self-adjoint due to Proposition 1,
P, is self-adjoint and of finite rank with D (P,) = %, Range
(P,)CD(H° forall n € N. Hence H %, H'™ H, are symmet-
ric, bounded and D(HS)=D(H™) =D(H,)= ¥, thus
HC H™ H, are self-adjoint.

Now we introduce the time evolution operators for
teR

U°(t) = exp(iH °t), (2.24)
U (t) = exp(iHt), (2.25)
US(t) = exp(iH t), (2.26)
U,(t)=exp(iH,t), (2.27)

which are well defined, because H°,H,H® H, are self-ad-
joint.

Theorem 1: For every te R U2(¢), U, (t) tend strongly
to U%¢), U(t), respectively, if n tends to infinity.

Proof: For any self-adjoint operator X, being densely
defined in a Hilbert space, it holds that®

X=Xx*=X (2.28)
For a closable operator Y, defined in a Hilbert space, the
domainD (Y )isacoreof Y (see Ref.9). Hence D (X )isacoreof
X. This can be applied to HH, i.e., D(H) is a core of

H°D(H) is a core of H Now we claim for every
YeD(H®)=D(H),

HO°y—H ), (2.29)

H,y—HY. (2.30)
One has

)= Y ¢aln), (2.31)

n=0
By =3 o (n + -;-) ¥, |n), (2.32)
n=0
and H°|¢) is an element of %, which means
0 2

S o (n + —1-) Y| <w. (2.33)

n=20 2
That implies

) 1 2
e, — = 5 |o(k+ )| -0
k=n+1 2
(2.34)

if n tends to infinity. Because P, tends strongly to 1, one also
has

(P, — 1)H °Y—0, (2.35)
if n tends to infinity. Equations (2.34) and (2.35) imply Eq.

2.29).

( i)ue to Proposition 1, #'™ is bounded, P, tends strong-
lyto 1, ||P,|| = 1, thus one concludes'® that P, H'™ P, tends
strongly to H'™, i.e., for every € 7,

P, H™P, y—>H™1. (2.36)
Equations (2.29) and (2.36) imply Eq. (2.30). From H® H$,
H,H, beingself-adjoint, D (H °) = D (H )beingacoreof H °,H,
and Egs. (2.29) and (2.30) we conclude'! that #%,H, tend to
H° H, respectively, in the sense of strong resolvent conver-

gence. From that we conclude'? that U2(z), U,(¢) tend
strongly to Ut ), U (t), respectively, which proves the claim.
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We want to conclude this section with a remark on the
usefulness of the approximation U, (t). We have that U%(¢)
and hence U?(¢) are already diagonal in the Fock space .% .
But U(t), U, (t) in general are not diagonal in .# . However,
U,(t) can easily be calculated by diagonalizing the finite-
dimensional Hermitian matrix corresponding to H,, and ex-
pressing U, (¢) in the eigenrepresentation of H, .

Hl. A FINITE SYSTEM OF OSCILLATORS IN THREE
SPACE DIMENSIONS

In this section we want to generalize the model and the
results of Sec. 11 to a finite system, of oscillators with nonlin-
ear coupling in three space dimensions. Because all the
proofs can be carried over essentially from Sec. II but require
only more tedious writing, we will omit them here.

Leta,,,a,!, denote the annihilation and creation opera-
tors, respectively, for particles corresponding to the frequen-
cies w,,,, where p = 1,2,3 counts the space dimension and
v=1,2,.., v,, counts the oscillators in each space dimen-
sion. One has

(200071 =86,.8, . (3.1)
[apr14..] = [a,5.a0.] =0 (3.2)
Weintroduce a new counting I = 1,...,1,,, I, = 3v,,, where

I corresponds one to one to a pair ( p,v). Hence Egs. (3.1) and
(3.2) read

[araj] =8, (3.3)
[a18;] = [a/ 8,7 ] =0. (3.4)
We put
I, 1
HO___ Z 0)] (a1+a1+ —). (3.5)
=1 2

The Fock space # is a Hilbert space, with the vacuum |0)
defined by

a,|0)=0, I=1,.,1,, (3.6)
and spanned by
(@) laft) ™
|n1,...,n,m) = W |0> (37)
The particle number operator N is given by
lm
N= 2 aI+aI’ (3.8)
I=1
and yields
N lnl,...,n1m> = (nl + oo + n,m)lnl,...,n1m>. (3.9)

We consider the interaction Hamiltonian
I,

m

G
H™ =exp(—N) ¥ ¥ hijha'a exp(—N)
Lj=11T=1

(3.10)
and the total Hamiltonian
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H=H°{+ H™
Again we assume the matrix #™™ to be symmetric.

Proposition 3: Proposition 1 holds true, if & °, ™, H,
and .¥ are substituted by definitions given in this section.

Let P, denote the orthogonal projector on the subspace
generated by all states characterized by a particle number
less or equal to n. Usually this subspace is denoted by
Fo®F 0 0F,. Wedefine H H™ H, by Egs. (2.21)}-
(2.23), where the definitions of H °, '™ ,H,P, are taken from
this section. Then the following proposition holds.

Proposition 4: Proposition 2 holds true, if H,H™ H,,
and . are substituted by the definitions of this section.

Wedefine U(t), U(t), U(t), and U, (t) by Egs. (2.24)-
(2.27) with the definitions of #°, H, H®, and H,, taken from
this section. Then the following theorem holds.

Theorem 2: Theorem 1 holds if U°(¢), U(¢), U2,(t) and
U, (t) are substituted by the definitions of this section.

(3.11)

IV. CONCLUSION

We have shown for a model consisting of a finite num-
ber of oscillators with a nonlinear coupling in three space
dimensions that the time evolution operator corresponding
to the full Hamiltonian can be approximated with arbitrary
accuracy by a time evolution operator corresponding to an
approximate full Hamiltonian. Due to the finite rank of the
latter Hamiltonian, the corresponding time evolution opera-
tor can be calculated exactly, that means in numerical calcu-
lations within the accuracy of the diagonalization of a finite-
dimensional Hermitian matrix and the calculation of the
functions exp(ix) for real x. The model interaction studied
here can be generalized to include unbounded operators in
the form of a polynomial in the creation and annihilation
operators.
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Starting from an N-body quantum space, we consider the Lie-algebraic framework where the
Poschl-Teller Hamiltonian, — } 32 + ¢ sech® y + s csch? y,, is the single sp(2,R ) Casimir
operator. The spectrum of this system is mixed: it contains a finite number of negative-energy
bound states and a positive-energy continuum of free states; it is identified with the Clebsch—
Gordan series of the &+ X.Z~ representation coupling. The wave functions are the sp(2,R )
Clebsch—Gordan coefficients of that coupling in the parabolic basis. Using only Lie-algebraic
techniques, we find the asymptotic behavior of these wave functions; for the special pure-trough
potential (s = 0) we derive thus the transmission and reflection amplitudes of the scattering

matrix.

I. INTRODUCTION

Symmetry methods involving dynamical algebras have
been long used to study the eigenstates and spectra of Schro-
dinger equations for certain one-dimensional potentials.'™
Notable among them are the hydrogen atom’ (bound states
and scattering states), the harmonic oscillator,® and the radi-
al oscillator® (bound states only); among the systems with
continuous spectra we know the free-fall (or linear) potential,
the free particle, and the repulsive oscillator,* and the latter
two in their welled versions. Here the symmetry method
builds the dynamical algebra, and —in all but the first case,
where it is the pseudo-Coulomb system which enjoys the al-
gebra—the Hamiltonian is an element of this Lie algebra,
which is*® sp(2,R ) = s0(2,1) = sl(2,R ) = su(1,1), and which
we refer to as the two-dimensional real symplectic algebra
sp(2,R ). (We note that Lie algebras are involved, rather than
Lie groups, as it is often stated.) Symmetries have a longer
history, of course, since the angular properties of any central
potential Hamiltonian and the rigid rotator acquainted phy-
sicists with group theory in the first place.” We are here con-
cerned with dynamical algebras, i.e., those whose represen-
tations correspond with the whole energy spectrum of the
system.

It is important to state that the only spectra that have
been obtained from a dynamical algebra of which the Hamil-
tonian is an element are equally spaced spectra®”® if discrete
(with a lower bound if realistic), a lower-bound continuum,
or a double non-lower-bound continuum. These cases corre-
spond to the Hamiltonian being on the elliptic, parabolic, or
hyperbolic subalgebras of sp(2,R ).®

Next, the Hamiltonian may be a simple function of one
or more of the generators, the spectrum now being that func-
tion of the integers or subset thereof. This construction may
be made for the bound hydrogen atom states, for its scatter-

®'On sabbatical leave from Instituto de Investigaciones en Matematicas
Aplicadas y en Sistemas, Universidad Nacional Auténoma de México,
04510 Mexico, D. F., Mexico.
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ing states separately,’ and has been used recently for the
Morse'® and Péschl-Teller'! potentials, among others, by
Alhassid, Giirsey, and Iachello.

The Morse potential'? is very well-known for its role in
molecular physics while the Pdschl-Teller potential'®
emerges in connection with diverse physical systems, such as
completely integrable many-body systems in one dimen-
sion,'* the solitary wave solutions to the Korteweg—de Vries
equation,'® and in the Hartree mean field equation of many-
body systems interacting through a § force'® among others.
The Poschl-Teller Schrodinger equation also stems from the
Klein—-Gordon equation on a space of constant curvature,
with an appropriate set of separating variables, the D’Alem-
bertian being the Laplace-Beltrami operator on a sphere or
hyperboloid."’

The Poschl-Teller potential has two free parameters:

V(x)=csech’ y +scsch’y. (1.1)

See Fig. 1. There is a ~s/y 2 core at the origin plus a
trough ~sech? Y- When 0< — s/c < 1, the two may com-
bine to a potential with a core (s > 0) and a trough (¢ > 0). This
trough may capture one or more quantum bound states
when 25 + } <y — 2¢ + §, which will be part of the spec-
trum of the Poschl-Teller quantum Hamiltonian HF. The
number of bound states is the integer part of the difference
between v2s + § and y — 2¢ + .

Alhassid,'® Giirsey,'® and Iachello'! used the algebra

£,V b
FIG. 1. (a) The Poschl-Teller potential
X with a core and trough, exhibiting two
4 i + bound states and the continuum. (b) A
V4 Poschl-Teller potential where the
“Ek 1% ® trough parameter is smaller than the
core parameter; it has only a continuum
of positive-energy states.
o X
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s0(3) with one subalgebra generator for full representation /*
and row m classification. The Poschl-Teller equation is then
found to be the square of that generator and thus the bound-
state spectrum is accounted for, being ~ — m? over the mul-
tiplet. This potential also has a continuum of positive-energy
scattering states, and the Weyl analytic continuation is used
to turn the algebra into so(2,1), where the positive contin-
uous energy eigenvalue is the square of the eigenvalue of a
noncompact generator of the algebra. They also investigate a
more general version of the Poschl-Teller potential, which is
obtained from a representation of the direct sum algebra
su(l,1)@su(1,1) realized by the symmetric top system in
which one of the Euler angles is made hyperbolic.?’ They are
thus able to show that the Poschl-Teller Hamiltonian
emerges as essentially the Casimir operator of the algebra
and that it has mixed spectrum, including the bound and
scattering states of the potential,?® a result also found by
Basu and Wolf.?!

In this article we shall reexamine the Poschl-Teller po-
tential, showing that the Clebsch-Gordan series®* of sp(2,R )
yields the spectrum of the system, while the eigenstates turn
out to be the sp(2,R) Clebsch—Gordan coefficients in the
parabolic chain of Basu and Wolf?' for a lower- and an up-
per-bound sp(2,R ) discrete series representation, coupling
into a finite sum of discrete series plus an integral over con-
tinuous-series representation. The energy values are deter-
mined by the coupled-sp{2,R ) representations, while the po-
tential parameters in (1.1) are determined by the two-factor
sp(2,R ) representations. The action of the raising and lower-
ing operators in the conjugate so(2,2) algebra allow us to
relate potentials (1.1) with different values of the potential
parameters s and ¢ for eigenstates of the same energy. In
particular they can be made to relate a given potential with
the free-particle potential ¥ %(y) = 0, the eigenstates of the
two systems then being related through an algebra with shift
operators, thus allowing a derivation of the reflection and
transmission coefficients of the .S matrix by purely algebraic
means. These will be functions of the potential parameters
and the energy of the state.

The mixed-spectrum character of the Péschl-Teller po-
tential makes it attractive for nuclear physics models of scat-
tering. It is shown in Sec. II and III that this potential arises
in an N-particle space out of the quadratic operators in posi-
tion and momentum, forming an oscillator sp(2V,R ) algebra,
which contains sp(2,R) through the maximal subalgebra
sp(2,R ) @ so(n,m). In this reduction, the representations of
the two summands are conjugate. We further decompose
so(n,m) Dso(n) @ so{m), each direct summand algebra having
a conjugate sp(2,R ), which provide the Péschl-Teller poten-
tial parameters s and ¢ with restrictions to discrete values. In
Sec. IV we use the s0(2,2) algebra generators to raise and
lower*>?? these values: the dimensions » and m are not cru-
cially important for the structure of the system,and so(2,2)
has most of the general features, plus some particularly use-
ful ones. In this way we find the reflection and transmission
coefficients?>® and the scattering matrix for this potential.
The closing section offers some conclusions as to the place of
the system treated here within the general systems whose
spectrum is given by the Clebsch—Gordan series for sp(2,R ),
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which may include the Coulomb system in the proper repre-
sentation coupling class.

il. THE OSCILLATOR REALIZATION OF
sp(2n,A) D sp(2,A) @ so(n)

We consider the Schridinger realization of the quan-
tum operators of position and momentum in an n-dimen-
sional Euclidean space R ",

Q. fix): =x, fix), P,flx):= — i%fﬂ, a=12..n.
xa
(2.1a)
They are self-adjoint in a common invariant domain dense in

LR "), and satisfy the well-known Heisenberg commuta-
tion relations

[Qa’ Pb] = l.‘sa,bl’

wherel is the unit operator.?> Next, we build all bilinear self-
adjoint operators in Q, and P,, denoting them as

(2.1b)

I =4P.P, —Q,Q,), (2.2a)
Vo= iNop: =4Q.P, +Q,P, —i5,,1), (2.2b)
T =4P.P, +Q,Q,), (2-2¢)
M,:=Q,P, —Q,P,, ab=1.2,...,n. (2.2d)

This set of operators closes under commutation, with
the commutation relations defining the 2n-dimensional real
symplectic algebra? sp(2n,R). Since J% =J¥ and M,

= — M,,, there are 2n* + n operators in the set and they

are self-adjoint in .Z*(R ). On this space, they yield the oscil-
lator® (or metaplectic®®) representation of sp(2n,R ). On this
space this representation is not irreducible, since the inver-
sion commutes with the set (2.2), and decomposes into two
irreducible representations, one in the subspace of even func-
tions and one in the subspace of odd functions.

Now we construct the linear combinations

Jk:= i J,t:a’

a=1

k=120. (2.3)
These three operators generate an algebra sp(2,R ) which
commutes with the operators M,, in (2.2d). The latter com-
mute among themselves and generate the n-dimensional or-
thogonal algebra so(n). We thus consider the algebra chain

sp(2n,R ) O sp(2,R ) & so(n) , (2.4)

where the subalgebra is maximal in the parent algebra. The
two direct summands in the subalgebra are, moreover, con-
Jugate, i.e., within the oscillator representation of sp(2n,R ),
the representation of one direct summand determines the
representation of the other. Indeed, the Casimir operator of
sp(2,R ) is®

= (J'7 + (FP — (P, (2.5a)
while the second-order Casimir operator of so(n) is 2
e . (2.5b)
2 ab=1
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and all higher-order Casimir operators of the latter are zero
since the algebra is realized on the n-sphere?” S”~"'. The
second-order Casimir operator (2.5b) is the Laplace-Bel-
trami operator on that (» — 1)-dimensional space S"~',
with constant curvature related to the radius of the sphere.?®
One may show directly replacing (2.2) that the two operators

(2.5) are related by
CP= —1C°+ Ln4—n). (2.6)

The eigenvalues of C** on S " ~ ! (i.e., the spectrum of the
D’Alembertian) are given by

c=Ill+n-2) 1=01.2,., 2.7)
and thus through (2.6), the eigenvalues of C* are

c?=k(l1 -k}, (2.8a)

k=44 in=inn+Lin+1,., (2.8b)

where k is referrred to as the Bargmann sp(2,R ) representa-
tion index.® The representations of sp(2,R ) present in the
decomposition (2.4) are thus the lower-bound discrete-series
representations &, . The parity of the so(n) representation /
on "~ is well known to be { — 1)’. It follows that on the
irreducible subspace of even functions, the oscillator realiza-
tion (2.2) decomposes into the direct sum of sp(2,R ) @ so(n)
representations (k,/) = (} n,0)+(3n + 1,2)4(3n + 2,4)+ -,
while in the subspace of odd functions it is
(kd) = (4 + 1) +(n + 33)+4n + 55)+ -

In the case n = 1, the generatorless algebra “so(1}” is

replaced by the inversion operator with eigenvalues + 1and

— 1 on the two-point space S °. The former goes with k = }
and the latter with k& = 3. This “so(1)” also effects the “alge-
brareduction” of so(2) to eigenvalues m = + / of the latter’s
single generator, the sign being the “so(1)”* eigenlabel. In the
general-n case, we need not concern ourselves with the repre-
sentation row labeling.

Regarding the subalgebra reduction of sp(2,R ), the bet-
ter-known® chain involves the compact subalgebra with gen-
erator J°. This operator is the n-dimensional harmonic oscil-
lator Hamiltonian with angular momentum /, whose
spectrum is lower bounded by k and is linearly spaced by
integers.” In this work we shall use the parabolic subalgebra
generator?®

1 n
2 agl Qa Qd M
This has been implicitly used whenever sp(2,R ) is realized in
terms of up-to-second-order differential operators, but has
not often appeared as an abstract subalgebra chain in the
physics literature. The operator J~ is noncompact and its
spectrum therefore continuous; in the discrete-series repre-
sentations & ", it is positive, as seen here, and simple. In the
continuous-series representations of the next section, it is
still simple but both positive and negative.>°

The algebra sp(2,R ) also has negative discrete-series re-
presentations, denoted by & . These may be obtained from
the positive-series operators (2.2) and (2.3) on .Z3R")
through the mapping®

J:=)-J= (2.9)
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A{ VPP -0 -1 . (2.10)
This is an automorphism of sp(2,R ), so the Casimir operator
eigenvalues (2.8) are unaffected. Itis involutive, but not with-
in the group generated by it, i.e., it is outer. It inverts the
harmonic-oscillator spectrum of J° to negative values, so the
eigenvalues of the latter are upper bound by — k. The spec-
trum of A~ is now the negative half-axis.

11l. COUPLING AND REDUCTION IN
sp(2N,R) D sp(2,A)  so(n,m)

We now consider the following Euclidean spaces: R *,
R ™ and R %, N = n + m, where the two first spaces are dis-
joint subspaces of the latter, arranged so that x,eR " for
1<a<n and x,€R ™ for n + 1<a<n + m = N. On the .¥*
(R ™) space of functions f(x) we may build the oscillator rep-
resentation of the symplectic algebra sp(2N,R ), which has
been presented in the last section and given in (2.2), letting all
index ranges grow to N. We reproduce the structure for R "
and R,, placing their oscillator algebras sp(2n,R) and
sp(2m,R ) as subalgebras of sp(2V,R ). Each of the former two
will be decomposed as sp(2n,R ) D sp,,(2,R ) @ so(n) and
sp(2m,R } D sp,,,)(2,R ) ® so(m), where the generators of the
first factors will be labeled as Jf,, and J¢,,, for k = 1,2,0, built
as in (2.3) with the appropriate summation index range.
Now, if we follow the same procedure with sp(2NV,R }, we are
coupling®'! the representations of sp,,(2,R ) and sp,,,(2,R )
to a representation of sp,,(2,R ). If the two factor represen-
tations belong to the & * series, their product?'?23!32 will
be reducible in terms of irreducible representations of the
latter also belonging to the & * series. If the former are given
by their Bargmann indices &, and k,,, the Clebsch~Gor-
dan series will contain the spy, (2,R ) representations &y,
= Kiny + KimysKin) + Kmy + 1,... and its Casimir operator
would have eigenvalues kv, (1 — ky,) with £y, on the se-
ries. These facts may be easily seen in the compact subalge-
bra reductions, where J3y, is the sum of the harmonic oscilla-
tors JO,, and J),, with the consequent sum of their discrete,
lower-bound spectra to a “radial” discrete, lower-bound
spectrum which, were we to follow this coupling, would lead
to the constraining Poschl-Teller potential (of the first type)
Viy)=csec’ y +scsc®y,0<y<m/2.
Our interest in this paper lies in the scattering P6schl—
Teller potential (i.e., of the second kind):

Ve(y)=csech®y +scsch’y, (3.1

which, according to the values of the two parameters, cand s,
will have a lower-bound continuum of scattering states, with
the possibility of a finite number of bound states.

To achieve this, we couple the two sp(2,R ) subalgebras
in sp(2n,R) and sp(2m,R) to the spy, (2,R) algebra in
sp(2V,R )through essentially the difference of the generators,
following the linear combinations?>'*2

J(IN) = J(ln) - J(lm) ’ (3.2a)
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(3.2b)
(3.2¢)

Ty = Yo + Tim »
J?N) = J?,,, - J}’,,,, .

This corresponds to coupling one & /) withone &, irre-
ducible representation. The so-algebra commuting with this
spy(2,R ) is the pseudo-orthogonal algebra so(n,m) whose
set of generators is the union of the so{n) generators M,,,
a,b = 1,...,n (communting nontrivially with in,,} ), the so{m})
generators M,,, a,b =n + 1,..,n + m (commuting nontri-
vially with Jf,), and the “cross” noncompact boost genera-
tors N, a=L.,mb=n+4 1,.,n+ m in (2.2b). We thus
work with the subalgebra chain

sp(2N,R ) D sp(2,R ) & so(n,m) . {3.3)

The second-order Casimir operator of this so(n,m) may
be expressed in the following form, in terms of the three
constituent sets of generators:

Cotmm) — soln 4 Ceolm) i nim

a=1b=n+1

(N, (3.4)

while that of sp v, (2,R ) is given by (2.5a) in terms of (3.2). The
two direct summand algebrasin (3.3), sp(2,R ) and so(n,m) are
again conjugate in sp(2V,R ), and their Casimir operators are
related as in (2.6), with N replacing n; the eigenvalues relate
accordingly.

The spectrum of the so(n,m) Casimir on the (n,m) hy-
perboloid H ¥ ~ ! may be written as in (2.7), but with a differ-

J

FPWIR) [k(l —k)<} k=kyinkpin — L >4,

W1 +425] €30,

This is the form of the spectra fitting into our coupling
scheme: mixed spectra with a continuum of positive energy
and a finite number of bound states with a characteristic
quadratically downward-increasing separation for negative
energy.

The previous statements are basis independent. In or-
der to see how (3.6) becomes the spectrum of the scattering
Péschl-Teller potential Schrédinger Hamiltonian, we intro-
duce the appropriate coordinates in R ™. These are (n,m)-
bipolar-hyperbolic coordinates x; (0,0,x,{vx },{ @ }):

X =wv;, j=12,..m;

y>0, 3 mP=1 (37

x; =150, j=n+l.,n+m 530, ¥ (@)=1
T am)
=: hy, px>0,
o= +1 (r>s) {" pCOShY, P> (3.8a)
s=:psinhy,
r=:psinhy,
= — 1 [ 3.
7 r<s) s=:pcoshy. (3.8b)

The {v;}}-, and {w,]ii7,, are coordinates on the
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kmin = k(ni

ent range of values of /. Through (2.8) we conclude that the
conjugate sp,(2,R) representation is labeled by k
= (1 + iA }/2 and thus belongs to the continuous (nonexcep-
tional®) representation series €< with Casimir eigenvalue
¢ = (1 + 4 ?)/4> jand multivaluationindex € = 0, resolved
in the .#*R ™) subspaces of even and odd functions.

When n =1=m, both “so(1)” Casimir operators are
zero and C**"'" is the square of a single boost generator N,
with a negative sign, i.e., ¢! = — 172 corresponding to
I=id, A>0.

For general n,m > 1, the coupling of & ., and Z ¢
representations of sp(2,R ) has the following Clebsch—Gor-
dan senele 422,31 32

gssn["(nl = K]
Ky

+ N -
km X g"w -
1Ky — kel >Ry > 3

+ f AT (3.5)

ie., for k, >k, a direct finite sum of lower-bound dis-
crete-series representations & v, fromky, = k,, — k., in
integer steps down to (but not including) 1, plus a direct inte-
gral over all nonexceptional continuous representation se-
ries with the appropriate multivaluation index € =0 or
€ =}, according to the total space inversion parity. The dis-
crete part of the spectrum is absent if k,, — k) <}. The Ca-
simir operator of sp;»,(2,R ) has thus the mixed spectrum

— Ko (3.6)

i

spheres "~ 'and S ™', and the Casimir operators of so(n)
and so(m) are second-order differential operators in them,
while 7 and 5 do not enter their expression. The so{n,m) Casi-
mir operator will be a differential operator in all variables
but p. One should be careful to note that these coordinates
are not global, i.e., two charts, labeled by o = + 1, are need-
ed to cover the r,5>0 quadrant by p, y>0, (2.8a} and (3.8b).
The so{n,m} Casimir operator will have two forms, one in
each chart.?'?!

We now detail the forms of the six operators and their
eigenvalues, whose eigenfunctions are—once appropriately
normalized—the Z/, XD m Clebsch-Gordan coeffi-
cients.?!

Ky CP™> has eigenvalue ki, (1 — k). This fixes the
v dependence of the eigenfunction to be an so(n) harmonic
with angular momentum [, = 2k, —} n.

Kipy: €T has eigenvalue k(1 — k). The o de-
pendence is that of an so(m) harmonic [, = 2k, —} m.

k) C*'*®) has eigenvalue PVR) siven by the
Clebsch—Gordan series {3.6), expressible through (2.6), (3.4),
and {3.7) as the differential operator on (o,y,v,0)},
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n n+m

CroR) = L N(4—N)—1 [c”("’ +o+ 3 (xa
=n+1

M=)+

=1

)Cso(n)

[N N—‘—)+5X2 coth y
[sech2 Y

s0(n)
— csch? x] e [sech2 b%

Note that this operator has one form on each chart. Now we
come to the parabolic subalgebra “row” labels.

r: J =4 7 with nonnegative eigenvalue.

s: Jim = } 5% with nonnegative eigenvalue.

(0:0): Iy = — Iy — I = 4lr* — 5°) = Jop”.

This eigenvalue is fixed by » and s, which determine the chart
o on which %%/ Jies, and p>0.

The normalized eigenfunctions of the first three opera-
tors, valuated at the eigenvalues of the last three, are the
numerical Clebsch—-Gordan coefficients. Only two of the lat-
ter three are independent. We may fix (o, p) and, say, 7, to
determine s. We decide to fix o and p, and let the coefficient
be a function of the single free coordinate y. Then, the
Clebsch—Gordan coefficients are obtained as functions of y
satisfying the differential eigenfunction equation (3.9) with
(3.6) for its spectrum.?! It is particularly important to fix
since this places us on a single chart ¢, which we choose
hereaftertobec = + 1.(Choosingo = — 1 only exchanges
n and m.)

Clebsch—Gordan coefficients, even for noncompact al-
gebras, are best known when reduced with respect to a com-
pact subalgebra,”"*? 5o that the row indices are integers m,,
m,, and m = m, + m,, for example. These satisfy three-
term recursion relations—a second-order difference equa-
tion—which stem from the coupled Casimir operator. Their
proper summation for normalization is a rather difficult
problem. In the noncompact parabolic subalgebra basis, the
row labels are continuous and the eigenfunctions of (3.9) sa-
tisfy an ordinary second-order differential equation when
the so(n) and so(m) eigenfunction subspaces are taken. We:
anticipate that the solutions of (3.9) are ,F, Gauss hypergeo-
metric functions,?' while the elliptic or hyperbolic subalge-

bras lead to ,F, functions of unit argument.!->?

The original .#*R V) eigenfunctions of the Casimir op-
erator are orthogonal under a maximal set of commuting
operators under the measure

dVx=p" 'dp2,.(x}dyd" " 'vd" o,
£2,,.(x)=osinh” "' ycosh™~'y.

(3.10a)
(3.10b)

The integration on v and o leads to orthogonality in the so{n)
and so(m) representation labels £, and k), and row labels
which are absent from the sp(2,R ) coefficient. Definite J»,
eigenfunctions restrict to a definite (o, p) value, on the y half-
line, the operator (3.9) is symmetric with respect to the mea-
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b ax,
: so{m)
(1 sz)C
a a\? s r)( /] 3)]
g _ —1)2 —1= g g
+(r8s+s3r) +((n )r+(m )s r8s+sc?r

s + ((n — 1)[tanh,y] + (m —

d a
t % ax,

)

(3.9)
)P

= -1

- cschzx} Cso(m)]’ for [a: + 1] _

I
sure 2, (y)dy. By similarity we may transform (3.9) to an

operator symmetric with respect to dy, containing thus no
first-order derivative terms:

0. — 9 1720Pwi2R) ) —1/
C p. — 0 1 2(: P .Q 1 2|k(,,,,k(m)

=LN@4—N)—}[& — {2k, — 1 — }} sech’ y

+ {(2k(n — 1 — 3} csch? y — YN —2)’].  (3.10c)

To obtain the usual — 432 + ¥ (y) form of Schrédinger
equations, we define

HFT =20 — 4= —192 + V), (3.11a)
where V' “(y) is the scattering Poschl-Teller potential (3.1)
with parameters

c= —4[(2k,, — 1 —1]<}, (3.11b)

s=3[Kkpm — 1P —1]> — (3.11¢)
and spectrum

Ey =2kp)(1 — kpy) — 3 = — 32k — 17, (3.114)

where the range of & in the Clebsch—Gordan series {3.5) and
(3.6) yields negative-energy bound states for couplings to the
discrete series: K = Kpins Kpin — Lo > b Kpin = Ky — Kim)-
The continuum of positive-energy scattering states appears
for couplings to the continuous series for kK = §(1 + ix), k0.
The multivaluation index is determined by ki, — K,
mod 1; € = 0 allows the x = 0 value, while € = ] excludes it
since the representation belongs to the exceptional type and
is not square-integrable.”®

Some remarks about the allowed values of the Péschl-
Teller parameters ¢ and s, and the proper spectrum of HF”
follow.

The coefficient s in (3.11b) multiplies the csch? y term of
the potential, which is singular as ~y ~2 at the origin. The
coefficient s represents thus a core parameter. There may be
three cases.

(a) The core may be a singular, negativewell (0> s> — })
for} <k, <3 Amongthe representations of sp,, (2,R ) con-
tained in the oscillator representation of sp(2V,R ), only k.,

= }leads to a potential with an attractive wells = — Jatthe
origin. This is what we would call a weak ® well for the pur-
poses of investigating the conditions under which the
Po6schl-Teller Hamiltonian has a unique spectrum.

(b) When £, =} or 3, the core parameter s is zero.>*
These values of &, are allowed within sp(2.V,R ) [see (2.8b)]
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only when /=0, m = 1, i.e., when the reduction of so(n,1) is
the canonical one to so{n), and {3.7) and (3.8} are spherical
coordinates. For n=2, this is the chain
sp(6,R ) Dsp(2,R ) @ 50(2,1), and the algebra so(2,1) is doubly
at play. Using only s0(2,1) with its Casimir operator and
generators, thus, we cannot get a nonzero core parameter.